Macrophage Migration Inhibitory Factor Restriction of HIV-1 Transinfection from Dendritic Cells to CD4+ T Cells through the Regulation of Autophagy.

J Invest Dermatol

Division of Dermatology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Division of Dermatology, Department of Medicine, Women's College Hospital, Toronto, Ontario, Canada. Electronic address:

Published: April 2023

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jid.2022.09.655DOI Listing

Publication Analysis

Top Keywords

macrophage migration
4
migration inhibitory
4
inhibitory factor
4
factor restriction
4
restriction hiv-1
4
hiv-1 transinfection
4
transinfection dendritic
4
dendritic cells
4
cells cd4+
4
cd4+ cells
4

Similar Publications

Background: Most spheroid models use size measurements as a primary readout parameter; some models extend analysis to T cell infiltration or perform caspase activation assays. However, to our knowledge, T cell motility analysis is not regularly included as an endpoint in imaging studies on cancer spheroids.

Methods: Here, we intend to demonstrate that motility analysis of macrophages and T cells is a valuable functional endpoint for studies on molecular interventions in the tumor microenvironment.

View Article and Find Full Text PDF

Glioblastomas (GBM) are malignant tumours with poor prognosis. Treatment involves chemotherapy and/or radiotherapy; however, there is currently no standard treatment for recurrence, and prognosis remains unfavourable. Inflammatory mediators and microRNAs (miRNAs) influence the aggressiveness of GBM, being involved in the communication with the cells of the tumour parenchyma, including microglia/macrophages, and maintaining an immunosuppressive microenvironment.

View Article and Find Full Text PDF

Inosine Prevents Colorectal Cancer Progression by Inducing M1 Phenotypic Polarization of Macrophages.

Molecules

December 2024

Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, National-Local Joint Engineering Research Center of Entomoceutics, College of Pharmacy, Dali University, Dali 671000, China.

Inosine (IS) is a naturally occurring metabolite of adenosine with potent immunomodulatory effects. This study investigates the immunomodulatory effects of inosine, particularly its ability to inhibit the development of colorectal cancer (CRC) cells CT26 through modulation of macrophage phenotypes. Aside from the already reported effects of inosine on T cells, in this study, in vitro experiments revealed that inosine could modulate macrophage phenotype.

View Article and Find Full Text PDF

Usefulness of serial in vivo imaging to directly assess the role of inflammation in thrombus resolution and organization.

Biochem Biophys Res Commun

January 2025

Division of Cardiovascular Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan; Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, Kobe, Japan.

Deep vein thrombosis (DVT) remains a significant health problem. Although animal models have provided significant insights into the DVT pathophysiology, time-course assessment in a same animal is technically limited. Recently, we reported a novel murine saphenous DVT model for in vivo visualization of spatiotemporal dynamics of inflammatory cells.

View Article and Find Full Text PDF

Immune thrombocytopenia (ITP) is an autoimmune disorder characterized by reduced platelet levels and heightened susceptibility to bleeding resulting from augmented autologous platelet destruction and diminished thrombopoiesis. Although antibody-mediated autoimmune reactions are widely recognized as primary factors, the precise etiological agents that trigger ITP remain unidentified. The pathogenesis of ITP remains unclear owing to the absence of comprehensive high-throughput data, except for the belated emergence of autoreactive antibodies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!