Ethnopharmacological use, pharmacology, toxicology, phytochemistry, and progress in Chinese crude drug processing of the lateral root of Aconitum carmichaelii Debeaux. (Fuzi): A review.

J Ethnopharmacol

Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, 150000, China. Electronic address:

Published: January 2023

AI Article Synopsis

Article Abstract

Ethnopharmacological Relevance: The lateral root of Aconitum carmichaelii Debeaux. (also known as Fuzi in Chinese) is a toxic Chinese medicine but widely used in clinical practice with remarkable effects. It is specifically used to treat cardiovascular diseases, rheumatoid arthritis, and other diseases, in Korea, Japan, and India.

Aim Of This Review: This study aimed to summarize and discuss the effects of drug processing on toxicity, chemical composition, and pharmacology of the lateral root of Aconitum carmichaelii Debeaux. This review could provide feasible insights for further studies.

Materials And Methods: Relevant information on phytochemistry, pharmacology, and toxicology of Fuzi was collected through published materials and electronic databases, including the Chinese Pharmacopoeia, Flora of China, Web of Science, PubMed, Baidu Scholar, Google Scholar, and CNKI.

Results: More than 100 chemical compounds, including alkaloids, flavonoids, and polysaccharides were revealed. Modern pharmacological studies show that these chemical components have good effects on anti-inflammatory, anti-tumor, anti-aging, treatment of cardiovascular diseases, and improving immunity. Di-ester alkaloids are the main source of Fuzi toxicity. Increasing studies have shown that Fuzi can induce multiple organ damage, especially cardiotoxicity and neurotoxicity. At present, most of the Fuzi used in clinical practice are processed. The processing affects the chemical structure, pharmacology, and toxicology of Fuzi. Moreover, different processing methods have different effects on Fuzi.

Conclusions: This review analyzed the effects of Fuzi processing methods on its toxicity and efficiency. The lateral roots of aconite are the known medicinal part of Fuzi; however, the aerial parts of aconite are understudied and require further research to expand its medicinal potential. Processing and compatibility are the primary means to reduce Fuzi toxicity. Nevertheless, establishing a reasonable unified safe dose range requires further discussion.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jep.2022.115838DOI Listing

Publication Analysis

Top Keywords

pharmacology toxicology
12
lateral root
12
root aconitum
12
aconitum carmichaelii
12
carmichaelii debeaux
12
fuzi
10
drug processing
8
debeaux fuzi
8
clinical practice
8
cardiovascular diseases
8

Similar Publications

Background: We investigated chitosan's protective effects against tertiary butylhydroquinone (TBHQ)-induced toxicity in adult male rats, focusing on cognitive functions and oxidative stress in the brain, liver, and kidneys.

Methods: Rats were divided into four groups (n = 8/group): (1) Control, (2) Chitosan only, (3) TBHQ only, and (4) Chitosan + TBHQ.

Results: TBHQ exposure led to significant cognitive impairments and increased oxidative stress, marked by elevated malondialdehyde (MDA) and decreased superoxide dismutase (SOD) and glutathione (GSH) levels.

View Article and Find Full Text PDF

The environmental impact of chemicals used in aquaculture, particularly nitrofurantoin, has raised global concern. Nitrofurantoin, a broad-spectrum antimicrobial, is commonly used in aquaculture despite safety risks. Determination of nitrofurantoin in water samples of fish ponds is necessary to ensure the safety and quality of seafood.

View Article and Find Full Text PDF

: Tamoxifen (TAM) is an anti-breast cancer drug suffering from acquired resistance development, prompting cancer relapse. Propranolol (PRO)'s repurposing for cancer therapy has gained interest. This work aimed to investigate combined TAM/PRO therapy for potentiating the anti-breast cancer activity of TAM.

View Article and Find Full Text PDF

Liver cancer is a prevalent form of carcinoma worldwide. A novel chitosan-coated optimized formulation capped with irradiated silver nanoparticles (INops) was fabricated to boost the anti-malignant impact of rosuvastatin calcium (RC). Using a 2-factorial design, eight formulations were produced using the solvent evaporation process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!