Aim Of Study: Glioblastoma Multiforme (GBM) is an aggressive brain cancer in adults that kills most patients in the first year due to ineffective treatment. Different clinical, biomedical, and image data features are needed to analyze GBM, increasing complexities. Besides, they lead to weak performances for machine learning models due to ignoring physicians' knowledge. Therefore, this paper proposes a hierarchical model based on Fuzzy C-mean (FCM) clustering, Wrapper feature selection, and twelve classifiers to analyze treatment plans.
Methodology/approach: The proposed method finds the effectiveness of previous and current treatment plans, hierarchically determining the best decision for future treatment plans for GBM patients using clinical data, biomedical data, and different image data. A case study is presented based on the Cancer Genome Atlas Glioblastoma Multiforme dataset to prove the effectiveness of the proposed model. This dataset is analyzed using data preprocessing, experts' knowledge, and a feature reduction method based on the Principal Component Analysis. Then, the FCM clustering method is utilized to reinforce classifier learning.
Outcomes Of Study: The proposed model finds the best combination of Wrapper feature selection and classifier for each cluster based on different measures, including accuracy, sensitivity, specificity, precision, F-score, and G-mean according to a hierarchical structure. It has the best performance among other reinforced classifiers. Besides, this model is compatible with real-world medical processes for GBM patients based on clinical, biomedical, and image data.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2022.106159 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!