Objectives: Dysfunction in mitochondrial activity may have profound role in ischemic stroke-induced neuronal death, hence maintaining the mitochondrial function seems to be valuable for neuronal viability and neurological improvement.

Methods: C57BL/6J mice were allocated into sham and stroke groups. Mice in the stroke groups underwent photothrombosis-induced stroke in the medial prefrontal cortex (mPFC) and were divided into the following subgroups; RB, Mito 85, Mito 170, and Mito 340, and received their respective treatments via intra-nasal route every other day (3 days per week) for one week. A battery of behavioral tests including social interaction, passive avoidance, and the Lashley III maze was used to investigate social, contextual, and spatial memories. Moreover, changes in mitochondrial function, including reactive oxygen species (ROS) and ATP levels, and mitochondrial membrane potential, were assessed in mPFC. The expression of growth-associated protein 43 (GAP-43), post-synaptic density-95 (PSD-95), and synaptophysin (SYP) was detected by western blotting.

Results: Behavioral results revealed that mitotherapy alleviated ischemia-induced memory impairment. Also, transplantation of exogenous mitochondria lowered ROS, restored ATP generation, and improved mitochondrial membrane potential. Induction of ischemia decreased the levels of synaptic markers in mPFC while exogenous mitochondria (170 and 340µg) significantly upregulated the expression of GAP-43 and PSD-95 after ischemic stroke.

Conclusion: Our research highlighted the importance of mitotherapy in regulating synaptic markers expression and mitochondria function, which could represent a potential strategy for improving cognitive and memory deficits following stroke.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2022.106801DOI Listing

Publication Analysis

Top Keywords

mitochondrial function
8
stroke groups
8
mitochondrial membrane
8
membrane potential
8
exogenous mitochondria
8
synaptic markers
8
mitochondrial
6
intranasal administration
4
mitochondria
4
administration mitochondria
4

Similar Publications

Objective: In this study, we examined the genetic, medical, and molecular traits of two Han Chinese families with the tRNA G5783A mutation to investigate the relationship between mitochondrial DNA (mtDNA) mutations and major depressive disorder (MDD).

Methods: Clinical data and comprehensive mitochondrial genomes were collected from the two families. Variants were assessed for evolutionary conservation, allelic frequencies, and their structural and functional impacts.

View Article and Find Full Text PDF

Mitochondrial protective potential of fucoxanthin in brain disorders.

J Nutr Sci

July 2024

Department of Human Nutrition and Hospitality Management, College of Human Environmental Sciences, The University of Alabama, Tuscaloosa, AL, USA.

Mitochondrial dysfunction is a common feature of brain disorders. Mitochondria play a central role in oxidative phosphorylation; thus changes in energy metabolism in the brain have been reported in conditions such as Alzheimer's disease, Parkinson's disease, and stroke. In addition, mitochondria regulate cellular responses associated with neuronal damage such as the production of reactive oxygen species (ROS), opening of the mitochondrial permeability transition pore (mPTP), and apoptosis.

View Article and Find Full Text PDF

Fumarprotocetraric acid and geraniin were identified as novel inhibitors of human respiratory syncytial virus infection .

Front Cell Infect Microbiol

December 2024

State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.

Introduction: Respiratory syncytial virus (RSV) remains a major international public health concern. However, disease treatment is limited to preventive care with monoclonal antibodies and supportive care. In this study, natural products were screened to identify novel anti-RSV inhibitors.

View Article and Find Full Text PDF

Heart failure with preserved ejection fraction (HFpEF) has recently emerged as an insidiously and increasingly prevalent heart failure phenotype. HFpEF often occurs in the context of hypertension and obesity and presents with diastolic dysfunction, ventricular hypertrophy, and myocardial fibrosis. Despite growing study of HFpEF, the causal links between early metabolic changes, bioenergetic perturbations, and cardiac structural remodeling remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!