Aggregates of charged metal particles obtained by electrostatic coupling with a compound of opposite charge in the vicinity of the net zero charge ratio are of interest in the field of plasmonics because the inter-particle distance is minimal, which favours plasmonic coupling. However, these structures present a low colloidal stability limiting the development of applications. In this article we show that globally neutral aggregates formed by electrostatic complexation of citrate-stabilized gold particles and a quaternized chitosan (i.e., polycation) around the net zero charge ratio could be stabilized at a nanometric size by the subsequent addition of polyelectrolyte chains. Furthermore, the sign of the charge carried by the stabilizing chains determines the sign of the global charge carried by the stabilized complexes. The stabilization is demonstrated in saline environment on a broad pH range as well as in a cell culture media over periods of several days. Contrarily to stabilization by charged particles, our stabilized complexes are found to retain their initial characteristics (i.e. shape, size, internal structure and optical properties) after stabilization. Hence, the plasmonic coupling allows to maximize the optical absorption around the 800 nm wavelength at which the lasers used for thermoplasmonic and surface enhanced Raman scattering analysis operate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2022.08.076 | DOI Listing |
Nat Commun
January 2025
Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China.
In drug development, the substitution of benzene rings in aniline-based drug candidates with saturated bridged bicyclic ring systems often enhances pharmacokinetic properties while preserving biological activity. However, current efforts predominantly focuses on bicyclo[1.1.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electrical Engineering, Arak University of Technology, Arāk, Iran.
This paper introduces an optimal sizing approach for battery energy storage systems (BESS) that integrates frequency regulation via an advanced frequency droop model (AFDM). In addition, based on the AFDM, a new formulation for charging/discharging of the battery with the purpose of system frequency control is presented. The studied MG system that consists of PV units, a diesel generator (DG), a combined heat and power (CHP) unit, a gas boiler, and a BESS is designed to meet the consumers' thermal and electrical load requirements as well as system frequency regulation.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Applied Chemistry, ZHCET, Faculty of Engineering and Technology, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India.
Herein, we have synthesized a Co(II)-based 2D coordination polymer [Co(5-AIA)(Imidazole)] () (AIA = 5-aminoisophthalic acid) via a solvothermal approach. SCXRD (single-crystal X-ray diffraction) was utilized to analyze the crystal structure of fabricated . Moreover, PXRD, TGA, FTIR, and SEM analyses were done to identify the structural features of fabricated .
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
City University of Hong Kong, Materials Science and Engineering, 83 Tat Chee Ave., Kowloon, HONG KONG.
Recently, aqueous proton batteries have shown promise for electrochemical energy storage using MXene electrodes. However, designing high-performance MXene proton batteries remains challenging due to the inevitable hydrogen evolution reaction (HER), the vast chemical composition space of MXene, and the unclear proton transport mechanism. To tackle these challenges, we established a general descriptor based on structural units of MXenes, termed the octahedral net charge descriptor (Qoct).
View Article and Find Full Text PDFSci Adv
January 2025
Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano and IU.NET, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.
Neurological disorders are a substantial global health burden, affecting millions of people worldwide. A key challenge in developing effective treatments and preventive measures is the realization of low-power wearable systems with early detection capabilities. Traditional strategies rely on machine learning algorithms, but their computational demands often exceed what miniaturized systems can provide.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!