Rare earth chalcogenides (RECs) with novel luminescence and magnetic properties offer fascinating opportunities for fundamental research and applications. However, controllable synthesis of RECs down to the two-dimensional (2D) limit still has a great challenge. Herein, 2D wedge-shaped ferromagnetic EuS single crystals are successfully synthesized via a facile molten-salt-assisted chemical vapor deposition method on sapphire. Based on the theoretical simulations and experimental measurements, the mechanisms of aligned growth and wedge-shaped growth are systematically proposed. The wedge-shaped growth is driven by a dual-interaction mechanism, where the coupling between EuS and the substrate steps impedes the lateral growth, and the strong bonding of nonlayered EuS itself facilitates the vertical growth. Through temperature-dependent Raman and photoluminescence characterization, the nanoflakes show a large Raman temperature coefficient of -0.030 cm K and uncommon increasing band gap with temperature. More importantly, by low-temperature magnetic force microscopy characterization, thickness variation of the magnetic signal is revealed within one sample, indicating the great potential of the wedge-shaped nanoflake to serve as a platform for highly efficient investigation of thickness-dependent magnetic properties. This work sheds new light on 2D RECs and will offer a deep understanding of 2D wedge-shaped materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.2c06023DOI Listing

Publication Analysis

Top Keywords

magnetic properties
8
wedge-shaped growth
8
magnetic
5
wedge-shaped
5
growth
5
two-dimensional wedge-shaped
4
wedge-shaped magnetic
4
eus
4
magnetic eus
4
eus insight
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!