Spatially Resolved Janus Patterning of Graphene by Direct Laser Writing.

J Am Chem Soc

Department of Chemistry and Pharmacy, Joint Institute of Advanced Materials and Processes (ZMP), Friedrich-Alexander University of Erlangen-Nürnberg, Nikolaus-Fiebiger-Strasse 10, 91058 Erlangen, Germany.

Published: November 2022

Covalently patterned Janus-functionalized graphene featuring a spatially defined asymmetric bifacial addend binding motif remains a challenging synthetic target. Here, a facile and universal laser writing approach for a one-step covalent Janus patterning of graphene is reported, leading to the formation of up to now elusive graphene architectures, solely consisting of antaratopically functionalized superlattices. The structurally defined covalent functionalization procedure is based on laser-triggered concurrent photolysis of two different photosensitizers situated on both sides of the graphene plane, generating radicals and subsequent addend binding in the laser-irradiated areas only. Careful structure analysis was performed by Raman spectroscopy and Kelvin probe force microscopy. In terms of the advantages of our newly established concept, including a simple/easy-to-operate patterning procedure, arbitrary pattern availability, and a high degree of addend binding, an easy access to tailor-designed Janus-functionalized graphene devices with spatially resolved functional entities can be envisaged.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.2c07280DOI Listing

Publication Analysis

Top Keywords

addend binding
12
spatially resolved
8
janus patterning
8
patterning graphene
8
laser writing
8
janus-functionalized graphene
8
graphene
6
resolved janus
4
graphene direct
4
direct laser
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!