Studies of diabetic glomerular injury have raised the possibility of developing useful early biomarkers and therapeutic approaches for the treatment of type 2 diabetic nephropathy (T2DN). In this study, we found that FGF13 expression is induced in glomerular endothelial cells (GECs) during T2DN progression. Endothelial-specific deletion of Fgf13 potentially alleviates T2DN damage, while Fgf13 overexpression has the opposite effect. Mechanistically, Fgf13 deficiency results in improved mitochondrial homeostasis and endothelial barrier integrity in T2DN. Moreover, FGF13-sensitive alteration of Parkin safeguards mitochondrial homeostasis in endothelium of T2DN through promotion of mitophagy and inhibition of apoptosis. Additionally, it is confirmed that the beneficial effects of Fgf13 deficiency on T2DN are abolished by endothelial-specific double deletion of Fgf13 and Prkn. The effects of Fgf13 deficiency on mitophagy and apoptosis through Parkin-dependent regulation may be distinct and separable events under diabetic conditions. These data show that the bifunctional role of Fgf13 deficiency in promoting mitophagy and inhibiting apoptosis through Parkin can shape mitochondrial homeostasis regulation in GECs and T2DN progression. As a potential therapeutic target for prevention and control of T2DN, a mechanistic understanding of the biofunction of FGF13 may also be relevant to the pathogenesis of other FGF13- and Parkin-associated diseases.

Download full-text PDF

Source
http://dx.doi.org/10.2337/db22-0231DOI Listing

Publication Analysis

Top Keywords

mitochondrial homeostasis
16
fgf13 deficiency
16
fgf13
9
fgf13-sensitive alteration
8
alteration parkin
8
parkin safeguards
8
safeguards mitochondrial
8
homeostasis endothelium
8
diabetic nephropathy
8
t2dn
8

Similar Publications

Copper is an essential element involved in various biochemical processes, such as mitochondrial energy production and antioxidant defense, but improper regulation can lead to cellular toxicity and disease. Copper Transporter 1 (CTR1) plays a key role in copper uptake and maintaining cellular copper homeostasis. Although CTR1 endocytosis was previously thought to reduce copper uptake when levels are high, it was unclear how rapid regulation is achieved.

View Article and Find Full Text PDF

Age-related macular degeneration (AMD) is a chronic condition that causes gradual central vision loss, most commonly in patients 50 years or older. This disease is commonly classified as either dry (non-exudative) or wet (exudative). Most patients with AMD have the non-exudative form, characterized by the presence of drusen in the macula.

View Article and Find Full Text PDF

Aims: NAD deficiency underlies obesity-induced metabolic disturbances. This study evaluated dihydronicotinamide riboside (NRH), a potent NAD enhancer, in lean and obese mice and explored whether NRH operates through a unique mechanism involving adenosine kinase (ADK), an enzyme critical for NRH-driven NAD synthesis.

Methods: Pharmacokinetic and pharmacodynamic analyses were performed following a single 250 mg/kg intraperitoneal injection of NRH in healthy mice.

View Article and Find Full Text PDF

Model organisms for investigating the functional involvement of NRF2 in non-communicable diseases.

Redox Biol

December 2024

Jacqui Wood Cancer Centre, Division of Cancer Research, School of Medicine, University of Dundee, Dundee, UK; Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Non-communicable chronic diseases (NCDs) are most commonly characterized by age-related loss of homeostasis and/or by cumulative exposures to environmental factors, which lead to low-grade sustained generation of reactive oxygen species (ROS), chronic inflammation and metabolic imbalance. Nuclear factor erythroid 2-like 2 (NRF2) is a basic leucine-zipper transcription factor that regulates the cellular redox homeostasis. NRF2 controls the expression of more than 250 human genes that share in their regulatory regions a cis-acting enhancer termed the antioxidant response element (ARE).

View Article and Find Full Text PDF

Forensic metabolomics: Tracing cyanide-induced metabolic changes in fatalities.

Forensic Sci Int

December 2024

Metabolomics Core Facility-MetCore, Vice-Presidency for Research, Universidad de los Andes, Bogotá 111711, Colombia. Electronic address:

Accurate detection of cyanide exposure is crucial, particularly in forensic science. However, cyanide's high volatility and potential biochemical conversions in biological samples pose challenges for direct detection, complicating the determination of cause of death. Identifying alternative cyanide metabolites as markers may mitigate false negatives and positives, extending the detection window in poisoning cases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!