This work describes a chronological (2000-2019) analysis of sentiment and emotion in 23 million headlines from 47 news media outlets popular in the United States. We use Transformer language models fine-tuned for detection of sentiment (positive, negative) and Ekman's six basic emotions (anger, disgust, fear, joy, sadness, surprise) plus neutral to automatically label the headlines. Results show an increase of sentiment negativity in headlines across written news media since the year 2000. Headlines from right-leaning news media have been, on average, consistently more negative than headlines from left-leaning outlets over the entire studied time period. The chronological analysis of headlines emotionality shows a growing proportion of headlines denoting anger, fear, disgust and sadness and a decrease in the prevalence of emotionally neutral headlines across the studied outlets over the 2000-2019 interval. The prevalence of headlines denoting anger appears to be higher, on average, in right-leaning news outlets than in left-leaning news media.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9578611PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0276367PLOS

Publication Analysis

Top Keywords

news media
20
headlines
10
analysis sentiment
8
sentiment emotion
8
transformer language
8
language models
8
right-leaning news
8
headlines denoting
8
denoting anger
8
news
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!