Gallium-based liquid metals (LMs) combine metallic properties with the deformability of a liquid, which makes them promising candidates for a variety of applications. To broaden the range of physical and chemical properties, a variety of solid additives have been incorporated into the LMs in the literature. In contrast, only a handful of secondary fluids have been incorporated into LMs to create foams (gas-in-LM) or emulsions (liquid-in-LM). LM foams readily form through mixing of LM in air, facilitated by the formation of a native oxide on the LM. In contrast, LM breaks up into microdroplets when mixed with a secondary liquid such as silicone oil. Stable silicone oil-in-LM emulsions form only during mixing of the oil with LM foam. In this work, we investigate the fundamental mechanism underlying this process. We describe two possible microscale mechanisms for emulsion formation: (1) oil replacing air in the foam or (2) oil creating additional features in the foam. The associated foam-to-emulsion density difference demonstrates that emulsions predominantly form through the addition of oxide-covered silicone oil capsules to the LM foam. We demonstrate this through density and surface wettability measurements and multiscale imaging of LM foam mixed with varied silicone oil contents in air or nitrogen environments. We also demonstrate the presence of a continuous silicone oil film on the emulsion surface and that this oil film prevents the embrittlement of contacting aluminum.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.2c02428 | DOI Listing |
Nat Commun
January 2025
Hefei National Research Center for Physical Sciences at the Microscale, Department of Physics and CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, University of Science and Technology of China, Hefei, China.
Dielectric capacitors are vital for modern power and electronic systems, and accurate assessment of their dielectric properties is paramount. However, in many prevailing reports, the fringing effect near electrodes and parasitic capacitance in the test circuit were often neglected, leading to overrated dielectric performances. Here, the serious impacts of the fringing effect and parasitic capacitance are investigated both experimentally and theoretically on different dielectrics including AlO, SrTiO, etc.
View Article and Find Full Text PDFJ Clin Med
January 2025
Department Ophthalmology, Miejskie Centrum Medyczne Jonscher, 93-113 Łódź, Poland.
Rhegmatogenous retinal detachment (RRD) is a severe condition that may lead to permanent vision loss if untreated. Pars plana vitrectomy (PPV) has become a preferred surgical intervention, particularly in complex cases. Objective: Retinal displacement (RD) following PPV for RRD can lead to visual distortions and can negatively impact patient quality of life.
View Article and Find Full Text PDFJ Clin Med
January 2025
Division of Ophthalmology, Department of Special Surgery, Faculty of Medicine, Jordan University of Science & Technology, Irbid 22110, Jordan.
: Rhegmatogenous retinal detachment (RRD) is a potentially blinding retinal disorder. RRD in the first eye is a well-recognized risk factor for bilateral RRD since risk factors that predispose to RRD affect both eyes. In this study, we assess the presenting factors that predispose individuals to bilateral RRD and evaluate the role of prophylactic retinopexy in preventing fellow-eye RRD.
View Article and Find Full Text PDFRetina
June 2024
Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
Purpose: Current treatments for retinoblastoma facilitate globe salvage but can result in vitreoretinal disorders that may require surgery. There is controversy on surgical approaches in eyes with retinoblastoma. Here we describe a transcorneal vitrectomy approach that avoids the use of chemotherapy or cryotherapy.
View Article and Find Full Text PDFJ Conserv Dent Endod
November 2024
Department of Conservative Dentistry and Endodontics, Chhattisgarh Dental College and Research Institute, Rajnandgaon, Chhattisgarh, India.
Background: Intracanal medicament (ICM) eliminates remaining bacteria and their toxins that were not removed by chemomechanical preparation during endodontic treatment.
Aim: The aim of this study was to compare and evaluate the removal of ozonated oil-based, silicone oil-based, and distilled water-based ICM with two calcium chelators, i.e.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!