The kinetic-sluggish oxygen evolution reaction (OER) is the main obstacle in electrocatalytic water splitting for sustainable production of hydrogen energy. Efficient water electrolysis can be ensured by lowering the overpotential of the OER by developing highly active catalysts. In this study, a controlled electrophoretic deposition strategy was used to develop a binder-free spinel oxide nanoparticle-coated Ni foam as an efficient electrocatalyst for water oxidation. Oxygen evolution was successfully promoted using the CoFeO catalyst, and it was optimized by modulating the electrophoretic parameters. When optimized, CoFeO nanoparticles presented more active catalytic sites, superior charge transfer, increased ion diffusion, and favorable reaction kinetics, which led to a small overpotential of 287 mV for a current density of 10 mA cm, with a small Tafel slope of 43 mV dec. Moreover, the CoFeO nanoparticle electrode exhibited considerable long-term stability over 100 h without detectable activity loss. The results demonstrate promising potential for large-scale water splitting using Earth-abundant oxide materials via a simple and cheap fabrication process.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.2c11456DOI Listing

Publication Analysis

Top Keywords

oxygen evolution
12
controlled electrophoretic
8
electrophoretic deposition
8
deposition strategy
8
cofeo nanoparticles
8
evolution reaction
8
water splitting
8
strategy binder-free
4
cofeo
4
binder-free cofeo
4

Similar Publications

Electrochemical nitrate reduction (NORR) to ammonia presents a promising alternative strategy to the traditional Haber-Bosch process. However, the competitive hydrogen evolution reaction (HER) reduces the Faradaic efficiency toward ammonia, while the oxygen evolution reaction (OER) increases the energy consumption. This study designs IrCu alloy nanoparticles as a bifunctional catalyst to achieve efficient NORR and OER while suppressing the unwanted HER.

View Article and Find Full Text PDF

Undoped ruthenium oxide as a stable catalyst for the acidic oxygen evolution reaction.

Nat Commun

January 2025

WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6102, Australia.

Reducing green hydrogen production cost is critical for its widespread application. Proton-exchange-membrane water electrolyzers are among the most promising technologies, and significant research has been focused on developing more active, durable, and cost-effective catalysts to replace expensive iridium in the anode. Ruthenium oxide is a leading alternative while its stability is inadequate.

View Article and Find Full Text PDF

The space charge effect induced by high-quality heterojunctions is essential for efficient electrocatalytic processes. Herein, we delicately manipulate intermolecular charge transfer by modifying substituents (-g = -CH3, -H, -NO2) with various electron donating/withdrawing capabilities in CoPc-g/CoS organic-inorganic heterostructures. CoPc-CH3, as a typical electron donor, transfers more electrons to CoS due to the presence of -CH3, forming the strongest space electric field and thus regulating the dual active sites at the interface.

View Article and Find Full Text PDF

Tuning Dual Catalytic Active Sites of Pt Single Atoms Paired with High-Entropy Alloy Nanoparticles for Advanced Li-O Batteries.

ACS Nano

January 2025

Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, P. R. China.

To achieve a long cycle life and high-capacity performance for Li-O batteries, it is critical to rationally modulate the formation and decomposition pathway of the discharge product LiO. Herein, we designed a highly efficient catalyst containing dual catalytic active sites of Pt single atoms (Pt) paired with high-entropy alloy (HEA) nanoparticles for oxygen reduction reaction (ORR) in Li-O batteries. HEA is designed with a moderate d-band center to enhance the surface adsorbed LiO intermediate (LiO(ads)), while Pt active sites exhibit weak adsorption energy and promote the soluble LiO pathway (LiO(sol)).

View Article and Find Full Text PDF

Synergistic high-entropy phosphides with phosphorus vacancies as robust bifunctional catalysts for efficient water splitting.

J Colloid Interface Sci

January 2025

State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082 PR China. Electronic address:

High-entropy phosphides (HEPs) have garnered increasing interest as innovative electrocatalysts for water splitting, highlighted by their distinctive catalytic activity, elemental synergy, and tunable electronic configuration. Herein, a novel electrode comprising CoNiCuZnFeP nanocubes with rich phosphorus vacancies was fabricated through coprecipitation and phosphorization two-step method. The synergistic interaction among metal elements and the modulation of the electronic configuration by phosphorus vacancies augmentation enhance the catalytic performance for both the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!