A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiong7tuo4oado2f3q9eeke033e30gq0dmti): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Depth-based sparse bundle adjustment. | LitMetric

AI Article Synopsis

  • - The paper highlights that using traditional bundle adjustment methods can lead to accuracy loss in parameter estimation when some observations are error-free, particularly in least squares matching.
  • - The authors propose a new approach involving a depth-based object point model and a depth-based sparse bundle adjustment method to address this issue, which represents object points using their 1D depth relative to reference images.
  • - Through simulations, the proposed method shows improved matching to the error model of the scenario, preventing further accuracy loss, and enhances computational efficiency in both simulated and real data experiments.

Article Abstract

It is demonstrated in this paper that due to error model inconsistency, a certain degree of accuracy loss would be incurred to the estimated parameters when the traditional bundle adjustment method is directly applied to the scenario where a fraction of observations is implicitly error free (e.g., the reference image points in commonly used least squares matching refinement). To this end, a depth-based object point model and corresponding depth-based sparse bundle adjustment method are proposed in this paper, in which the position of an object point is represented by its 1D depth relative to its reference image. A corresponding projection model is derived, the sparse block structures of normal equations are studied depending on whether there are shared image parameters to be optimized or not, and corresponding sparse solutions of the normal equations and parameter covariance matrices are derived. Compared with the traditional sparse bundle adjustment method, simulated experiments demonstrate that our method matches the error model of the target scenario, and thus can avoid further accuracy loss. Moreover, both simulated and real data experiments demonstrate that our method can effectively improve computational efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.450727DOI Listing

Publication Analysis

Top Keywords

bundle adjustment
16
sparse bundle
12
adjustment method
12
depth-based sparse
8
error model
8
accuracy loss
8
reference image
8
object point
8
normal equations
8
experiments demonstrate
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!