Multilevel diffractive optical elements (DOEs) offer a solution to approximate complex diffractive phase profiles in a stepwise manner. However, while much attention has focused on efficiency, the impact on modal content in the context of structured light has, to our best knowledge, remained unexplored. Here, we outline a simple theory that accounts for efficiency and modal purity in arbitrary structured light produced by multilevel DOEs. We make use of a phase-only spatial light modulator as a "testbed" to experimentally implement various multileveled diffractive profiles, including orbital angular momentum beams, Bessel beams, and Airy beams, outlining the subsequent efficiency and purity both theoretically and experimentally, confirming that a low number of multilevel steps can produce modes of high fidelity. Our work will be useful to those wishing to digitally evaluate modal effects from DOEs prior to physical fabrication.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.469511DOI Listing

Publication Analysis

Top Keywords

multilevel diffractive
8
diffractive optical
8
optical elements
8
spatial light
8
light modulator
8
structured light
8
simulating multilevel
4
diffractive
4
elements spatial
4
light
4

Similar Publications

Single-Component Coordination Polymers with Excitation Wavelength- and Temperature-Dependent Long Persistent Luminescence toward Multilevel Information Security.

Inorg Chem

December 2024

Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotope, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China.

Metal-organic hybrid materials with long persistent luminescence (LPL) properties have attracted a lot of attention due to their enormous potential for applications in information encryption, anticounterfeiting, and other correlation fields. However, achieving multimodal luminescence in a single component remains a significant challenge. Herein, we report two two-dimensional LPL coordination polymers: {[Zn(BA)(BIMB)]·2HO} () and {[Cd(BA)(BIMB)]·3HO} () (BIMB = 1,3-bis(imidazol-1-yl)benzene; BA = butanedioic acid).

View Article and Find Full Text PDF

Metasurface with all-optical tunability for spatially-resolved and multilevel thermal radiation.

Nanophotonics

April 2024

Laser Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China.

Manipulating the thermal emission in the infrared (IR) range significantly impacts both fundamental scientific research and various technological applications, including IR thermal camouflage, information encryption, and radiative cooling. While prior research has put forth numerous materials and structures for these objectives, the significant challenge lies in attaining spatially resolved and dynamically multilevel control over their thermal emissions. In this study, a one-step ultrafast laser writing technique is experimentally demonstrated to achieve position-selective control over thermal emission based on the phase-change material GeSbTe (GST).

View Article and Find Full Text PDF

Fiber-form optics extends the high-resolution tomographic imaging capabilities of optical coherence tomography (OCT) to the inside of the human body, i.e., endoscopic OCT.

View Article and Find Full Text PDF

Chemical Synthesis of ~1 nm Multilevel Capacitor-like Particles with Atomic Precision.

Angew Chem Int Ed Engl

December 2024

Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China.

Can the chemically synthesized nanoparticles act as nanodevices or nanomachines? Herein, we demonstrated this feasibility. A novel nanocluster (ultrasmall nanoparticle) [AuCd(m-MBT)][N(CH)] (AuCd in short, m-MBTH: m-methylbenzenethiol) obtained via developing a synthesis method has a cannula-like structure of the outer shell and an internal sleeve, revealed by single-crystal X-ray diffraction. Natural population analysis (NPA) charge calculations, charge carrier transport of AuCd (during which an intra-nanocluster anti-galvanic reaction was observed) after unneutral charging using NaBH as well as voltammetry proved the capacitor-like character of AuCd.

View Article and Find Full Text PDF

The generation of a specific laser beam profile on the work surface is key to various laser beam shaping tasks, relying heavily on diffractive optical elements (DOEs). Most beam-shaping DOEs are designed using iterative Fourier transform algorithms (IFTAs), which generally have slow convergence and prone to stagnate at local minima. Moreover, the microreliefs generated by IFTAs tend to be irregular, complicating manufacturing and causing uncontrolled scattering of light.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!