An accurate location of the focal position with respect to a solid target is a key task for different applications, for instance, in laser driven plasma acceleration for x-ray generation where minimum required intensities are above 10/. For such practical applications, new approaches for focus location and target delivery techniques are needed to achieve the required intensity, repeatability, and stability. There are different techniques to accomplish the focusing and target positioning task such as interferometry-, microscopy-, astigmatism-, and nonlinear-optics-based techniques, with their respective advantages and limitations. We present improvements of a focusing technique based on an astigmatic method with potential applications where maximum intensity at the target position is necessary. The presented technique demonstrates high accuracy up to 5 µm, below the Rayleigh range, and also its capability to work in rough surfaces targets and tilt tolerance of the target, with respect to the normal of the target surface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.469110 | DOI Listing |
Microbiome
January 2025
Department of Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11A, Jena, 07745, Germany.
Background: The pathogenesis of non-alcoholic fatty liver disease (NAFLD) with a global prevalence of 30% is multifactorial and the involvement of gut bacteria has been recently proposed. However, finding robust bacterial signatures of NAFLD has been a great challenge, mainly due to its co-occurrence with other metabolic diseases.
Results: Here, we collected public metagenomic data and integrated the taxonomy profiles with in silico generated community metabolic outputs, and detailed clinical data, of 1206 Chinese subjects w/wo metabolic diseases, including NAFLD (obese and lean), obesity, T2D, hypertension, and atherosclerosis.
Genome Med
January 2025
Blizard Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, E1 2AT, UK.
Background: Senescence classification is an acknowledged challenge within the field, as markers are cell-type and context dependent. Currently, multiple morphological and immunofluorescence markers are required. However, emerging scRNA-seq datasets have enabled an increased understanding of senescent cell heterogeneity.
View Article and Find Full Text PDFCancer Cell Int
January 2025
Department of Immuno-Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510080, China.
Background: Patients with lung adenocarcinoma (LUAD) receiving drug treatment often have an unpredictive response and there is a lack of effective methods to predict treatment outcome for patients. Dendritic cells (DCs) play a significant role in the tumor microenvironment and the DCs-related gene signature may be used to predict treatment outcome. Here, we screened for DC-related genes to construct a prognostic signature to predict prognosis and response to immunotherapy in LUAD patients.
View Article and Find Full Text PDFJ Transl Med
January 2025
School of Information and Communication Engineering, Dalian University of Technology, No. 2 Linggong Road, 116024, Dalian, China.
Background: Parkinson's Disease (PD) is a neurodegenerative disorder, and eye movement abnormalities are a significant symptom of its diagnosis. In this paper, we developed a multi-task driven by eye movement in a virtual reality (VR) environment to elicit PD-specific eye movement abnormalities. The abnormal features were subsequently modeled by using the proposed deep learning algorithm to achieve an auxiliary diagnosis of PD.
View Article and Find Full Text PDFBMC Med Inform Decis Mak
January 2025
Department of Pharmacy, Hangzhou Third People's Hospital, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China.
Background: Alopecia areata (AA) is a common non-scarring hair loss disorder associated with autoimmune conditions. However, the pathobiology of AA is not well understood, and there is no targeted therapy available for AA. METHODS: In this study, differential gene expression analysis, immune status assessment, weighted correlation network analysis (WGCNA), and functional enrichment analysis were performed to identify shared genes associated with both immunological response and AA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!