We show the presence of hybridization between fundamental TE and first higher-order TM modes in a dielectric loaded plasmonic waveguide of appropriately chosen core dimensions. Furthermore, a critical hybridization point is achieved at which both modes have nearly equal fraction of the TE and TM polarizations. Exploiting the interference among such modes, we propose the design of a compact and highly sensitive modal interferometer. The bulk and surface sensitivities of the proposed sensor are found to be ∼3-10µ/ for refractive index (RI) ∼1.33-1.36 and ∼0.7/ for an adsorbed layer of RI 1.45, respectively. The proposed sensor gives robust performance against fabrication imperfections and is stable against temperature fluctuations due to extremely low temperature cross-sensitivity (∼10-15/ for a temperature change up to ∼100).

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.461465DOI Listing

Publication Analysis

Top Keywords

design compact
8
compact highly
8
highly sensitive
8
sensitive modal
8
modal interferometer
8
modes dielectric
8
dielectric loaded
8
loaded plasmonic
8
plasmonic waveguide
8
proposed sensor
8

Similar Publications

With careful design and integration, microring resonators can serve as a promising foundation for developing compact and scalable sources of non-classical light for quantum information processing. However, the current design flow is hindered by computational challenges and a complex, high-dimensional parameter space with interdependent variables. In this work, we present a knowledge-integrated machine learning framework based on Bayesian Optimization for designing squeezed light sources using microring resonators.

View Article and Find Full Text PDF

The effect of PEO/NaCl dual porogens in the fabrication of porous PCL membranes via a solid-state blending approach.

Sci Rep

January 2025

Industrial Engineering Department, School of Applied Technical Sciences, German Jordanian University, Amman, 11180, Jordan.

In this investigation, the influence of a combination of poly(ethylene-oxide) (PEO) and salt (NaCl) as water-soluble porogens on the synthesis of sustainable porous poly(ε-caprolactone) (PCL) membranes is explored. Nine mixture compositions are examined. PCL sheets are fabricated through the cryomilling, hot pressing, and porogen leaching approach.

View Article and Find Full Text PDF

Unmanned roller lateral positioning method for asphalt road construction.

Sci Rep

January 2025

Key Laboratory of Road Construction Technology and Equipment of MOE, Chang'an University, Xi'an, 710064, China.

Unmanned rollers are typically equipped with satellite-based positioning systems for positional monitoring. However, satellite-based positioning systems may result in unmanned rollers driving out of the specified compaction areas during asphalt road construction, which affects the compaction quality and has potential safety hazards. Additionally, satellite-based positioning systems may encounter signal interference and cannot locate unmanned rollers.

View Article and Find Full Text PDF

This study presents the design and analysis of a compact 28 GHz MIMO antenna for 5G wireless networks, incorporating simulations, measurements, and machine learning (ML) techniques to optimize its performance. With dimensions of 3.19 λ₀ × 3.

View Article and Find Full Text PDF

A lensless compact arrangement based on digital in-line holography under Gabor's regime is proposed as a novel contactless method to assess the profile of multifocal intraocular lenses (MIOLs) which are conformed by several diffractive rings. Diffractive MIOLs are a widely adopted ophthalmologic option for the correction of presbyopia in patients undergoing cataract surgery. The MIOL optical design might introduce non-negligible optical performance differences between lenses as well as the introduction of undesirable photic phenomena (such as halos and glare) affecting the vision of users.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!