Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Future gravitational-wave detectors will use frequency-dependent squeezed vacuum states to obtain broadband reduction of quantum noise. Quantum noise is one of the major limitations to the sensitivity of these detectors. Advanced LIGO+, Advanced Virgo+, and KAGRA plan to generate frequency-dependent squeezed states by coupling a frequency-independent squeezed light state with a filter cavity. An alternative technique is under consideration, based on conditional squeezing with quantum entanglement: Einstein-Podolsky-Rosen (EPR) squeezing. In the EPR scheme, two vacuum entangled states, the signal field at and the idler field at +, must be spatially separated with an optical resonator and sent to two separate homodyne detectors. In this framework, we have designed and tested a solid Fabry-Perot etalon, to be used in an EPR table-top experiment prototype, thermally controlled without the use of a control probe optical beam. This device can also be used in optical experiments where the use of a bright beam to control an optical resonator is not possible, or where a simpler optical device is preferred.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.459190 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!