Electromagnetically induced transparency in atomic systems involving Rydberg states is known to be a sensitive probe of incident microwave (MW) fields, in particular those resonant with Rydberg-to-Rydberg transitions. Here we propose an intelligible analytical model of a Rydberg atomic receiver's response to amplitude- (AM) and frequency-modulated (FM) signals and compare it with experimental results, presenting a setup that allows sending signals with either AM or FM and evaluating their efficiency with demodulation. Additionally, the setup reveals a detection configuration using all circular polarizations for optical fields and allowing detection of a circularly polarized MW field, propagating colinearly with optical beams. In our measurements, we systematically show that several parameters exhibit local optimum characteristics and then estimate these optimal parameters and working ranges, addressing the need to devise a robust Rydberg MW sensor and its operational protocol.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.472295DOI Listing

Publication Analysis

Top Keywords

sensitivity rydberg-atom
4
rydberg-atom receiver
4
receiver frequency
4
frequency amplitude
4
amplitude modulation
4
modulation microwaves
4
microwaves electromagnetically
4
electromagnetically induced
4
induced transparency
4
transparency atomic
4

Similar Publications

Approaching the standard quantum limit of a Rydberg-atom microwave electrometer.

Sci Adv

December 2024

Key Laboratory of Atomic and Subatomic Structure and Quantum Control (Ministry of Education), Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, School of Physics, South China Normal University, Guangzhou 510006, China.

The development of a microwave electrometer with inherent uncertainty approaching its ultimate limit carries both fundamental and technological significance. However, because of the thermal motion of atoms, the state-of-art Rydberg electrometer falls considerably short of the standard quantum limit by about three orders of magnitude. Here, we use an optically thin medium with approximately 5.

View Article and Find Full Text PDF

Rydberg atoms exhibit both remarkable sensitivity to electromagnetic fields making them promising candidates for revolutionizing field sensors and, unlike conventional antennas, they neither disturb the measured field nor necessitate extensive calibration procedures. In this study, we propose a receiver design for data-modulated signal reception near the 2.4 GHz Wi-Fi frequency band, harnessing the capabilities of warm Rydberg atoms.

View Article and Find Full Text PDF

Rydberg atom-based radio frequency electromagnetic field sensors are drawing wide-spread interest because of their unique properties, such as small size, dielectric construction, and self-calibration. These photonic sensors use lasers to prepare atoms and read out the atomic response to a radio frequency electromagnetic field based on electromagnetically induced transparency, or related phenomena. Much of the theoretical work has focused on the Autler-Townes splitting induced by the radio frequency wave.

View Article and Find Full Text PDF

Fields with frequencies below megahertz are challenging for Rydberg-atom-based measurements, due to the low-frequency electric field screening effect caused by the alkali-metal atoms adsorbed on the inner surface of the container. In this paper, we investigate electric field measurements in the ultralow frequency (ULF), very low frequency (VLF), and low frequency (LF) bands in a Cs vapor cell with built-in parallel electrodes. With optimization of the applied DC field, we achieve high-sensitive detection of the electric field at frequencies of 1 kHz, 10 kHz, and 100 kHz based on the Rydberg-atom sensor, with the minimum electric field strength down to 18.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers improved the detection of radio frequency (RF) electric fields using Rydberg atoms combined with a specialized local oscillator in a superheterodyne receiver.
  • Their theoretical model shows how sensitivity in measuring E-field strength is influenced by the polarizability of Rydberg states and the local oscillator's strength.
  • They achieved a notably high sensitivity of 9.6 × 10^-5 V/m/√Hz at 63 MHz for the ${\rm 90S}_{1/2}$ state, which significantly surpasses previous results and approaches the limits of standard dipole antennas without extra components.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!