We have used the electrocyte of Torpedo electric organ as a model system for the study of AchR stabilization in the postsynaptic membrane. Attention was focused on membrane cytoskeleton interactions in particular on a peripheral protein of 43 KD that is believed to participate in AchR immobilization. Using immunocytochemical methods, we have shown that the cortical skeleton in Torpedo electrocyte displays a local differentiation proper for each specialized domain of the plasma membrane. In the postsynaptic membrane, characterized by an accumulation and a geometrical organization of the receptors in the plane of the membrane, the 43 KD protein participates in a submembraneous coating or "postsynaptic densities" that strictly codistribute with the AchR. The 43 KD protein might also account for the anchoring of intermediate-sized filaments. The organization of the postsynaptic domain appears readily different from that of the non-innervated one where the membrane folds are maintained by a cortical meshwork of cytoskeletal proteins such as ankyrin, spectrin and oligomeric actin. In conclusion, the asymmetrical organization of the cortical skeleton in the electrocyte offers a unique opportunity for the study of the specific aspects of membrane-skeleton interactions that take place in the postsynaptic domain.

Download full-text PDF

Source
http://dx.doi.org/10.3109/10799898709054980DOI Listing

Publication Analysis

Top Keywords

torpedo electrocyte
8
model system
8
system study
8
postsynaptic membrane
8
cortical skeleton
8
postsynaptic domain
8
membrane
6
electrocyte model
4
study receptor-cytoskeleton
4
receptor-cytoskeleton interactions
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!