Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We explore the contribution of convolutional neural networks to correcting for the effect of the point spread function (PSF) of the optics when applying ghost imaging (GI) combined with deep learning to identify defect positions in materials. GI can be accelerated by combining GI and deep learning. However, no method has been established for determining the relevant model parameters. A simple model with different kernel sizes was built. Its accuracy was evaluated for data containing the effects of different PSFs. Numerical analysis and empirical experiments demonstrate that the accuracy of defect identification improved by matching the kernel size with the PSF of the optics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.460145 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!