Microbial communities are important components of alpine lakes, especially in extreme environments such as salt lakes. However, few studies have examined the co-occurrence network of microbial communities and various environmental factors in the water of salt lakes on the Qinghai-Tibet Plateau. From May to June 2019, nine samples from seven salt lakes with water salinity ranges from 13 to 267‰ on the Qinghai-Tibet Plateau were collected. There were great differences between low-salinity samples and high-salinity samples in the inorganic salt ion concentration, pH, and biodiversity. In addition, the microbial community sturcture in low-salinity samples and high-salinity samples differed, suggesting that each sample has its own specific species. The co-occurrence network suggests that salinity was the most important forcing factor. We believe that salinity and inorganic salt ions can result in differences in microbial community in different salt lakes. This sequencing survey of multiple salt lakes with various salinities on the Qinghai-Tibet Plateau enhances our understanding of the response of microbial communities to environmental heterogeneity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-022-23572-xDOI Listing

Publication Analysis

Top Keywords

salt lakes
24
qinghai-tibet plateau
16
co-occurrence network
12
microbial community
12
microbial communities
12
network microbial
8
salt
8
lakes qinghai-tibet
8
communities environmental
8
low-salinity samples
8

Similar Publications

Climate change and human activities have led to frequent exchanges of sedimentary and aquatic microorganisms in lakes. However, the ability of these microorganisms to survive in their respective habitats between saline lake sediment and water remains unclear. In this study, we investigated microbial sources and community composition and metabolic functions in sediments and water in Yuncheng Salt Lake using a combination of source tracking and Illumina MiSeq sequencing.

View Article and Find Full Text PDF

Electrochemical Li extraction technology is a highly promising approach for Li extraction from salt lakes. To enhance its practical application, it is crucial to elucidate the ion/electron transfer mechanism under diverse process conditions particularly different electron fluxes. Different migration intermediate states demonstrate the distinct ion migration mechanisms inside the LiMnO lattice at different electron fluxes.

View Article and Find Full Text PDF

Heteropolyacid Ligands in Two-Dimensional Channels Enable Lithium Separation from Monovalent Cations.

ACS Nano

January 2025

Institute of Molecular Plus, Department of Chemistry, Tianjin University, Tianjin 300072, People's Republic of China.

Extracting lithium from salt lakes requires ion-selective membranes with customizable nanochannels. However, it remains a major challenge to separate alkali cations due to their same valences and similar ionic radius. Inspired by the K channel of KcsA K, significant progress has been made in adjusting nanochannel size to control the ion selectivity dominated by alkali cations dehydration.

View Article and Find Full Text PDF

Nanomorphogenesis of interlayered polyamide membranes for precise ion sieving in lithium extraction.

Water Res

December 2024

Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan; Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe 657-8501, Japan. Electronic address:

Nanofiltration (NF) offers a scalable and energy-efficient method for lithium extraction from salt lakes. However, the selective separation of lithium from magnesium, particularly in brines with high magnesium concentrations, remains a significant challenge due to the close similarity in their hydrated ionic radii. The limited Li/Mgselectivity of current NF membranes is primarily attributed to insufficient control over pore size and surface charge.

View Article and Find Full Text PDF

Applying Ra and Ra to Trace Lateral Groundwater Discharge into Lake Qinghai, China.

Ground Water

December 2024

Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China.

Quantifying lacustrine groundwater discharge (LGD) is important for understanding the dynamics of lake ecosystems and their expansion. This study focuses on Lake Qinghai, employing radium isotope models to evaluate the contributions of both shallow and deep groundwater. The data indicate that the activity of Ra and Ra demonstrates a pronounced gradient, decreasing from the shoreline to the center of Lake Qinghai.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!