Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
During the summer of 2015, four 4D seismic surveys were conducted on the northeastern Sakhalin shelf near the feeding grounds of the Korean-Okhotsk (western) gray whale (Eschrichtius robustus) population. In addition to the seismic surveys, onshore pile driving activities and vessel operations occurred. Forty autonomous underwater acoustic recorders provided data in the 2 Hz to15 kHz frequency band. Recordings were analyzed to evaluate the characteristics of impulses propagating from the seismic sources. Acoustic metrics analyzed comprised peak sound pressure level (PK), mean square sound pressure level (SPL), sound exposure level (SEL), T, T (the time intervals that contain the full and 90% of the energy of the impulse), and kurtosis. The impulses analyzed differed significantly due to the variability and complexity of propagation in the shallow water of the northeast Sakhalin shelf. At larger ranges, a seismic precursor propagated in the seabed ahead of the acoustic impulse, and the impulses often interfered with each other, complicating analyses. Additional processing of recordings allowed evaluation and documentation of relevant metrics for pile driving, vessel sounds, and ambient background levels. The computed metrics were used to calibrate acoustic models, generating time resolved estimates of the acoustic levels from seismic surveys, pile driving, and vessel operations on a gray whale distribution grid and along observed gray whale tracks. This paper describes the development of the metrics and the calibrated acoustic models, both of which will be used in work quantifying gray whale behavioral and distribution responses to underwater sounds and to determine whether these observed responses have the potential to impact important parameters at the population level (e.g., reproductive success).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9579097 | PMC |
http://dx.doi.org/10.1007/s10661-022-10021-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!