Hippoboscidae and Nycteribiidae of the dipteran superfamily Hippoboscoidea are obligate ectoparasites, which feed on the blood of different mammals. Due to their limited flight capability, the attachment system on all tarsi is of great importance for a secure grasp onto their host and thus for their survival. In this study, the functional morphology of the attachment system of two hippoboscid species and two nycteribiid species was compared in their specificity to the host substrate. Based on data from scanning electron microscopy and confocal laser scanning microscopy, it was shown that the attachment systems of both Hippoboscidae and Nycteribiidae (Hippoboscoidea) differ greatly from that of other calyptrate flies and are uniform within the respective families. All studied species have an attachment system with two monodentate claws and two pulvilli. The claws and pulvilli of the Hippoboscidae are asymmetric, which is an adaptation to the fur of even-toed ungulates (Artiodactyla). The fur of these mammals possesses both, thinner woolen and thicker coat hair; thus, the asymmetry of the attachment system of the hippoboscid species enables a secure attachment to all surfaces of their hosts. The claws and pulvilli of the nyceribiid species do not show an asymmetry, since the fur of their bat (Chiroptera) hosts consists of hairs with the same thickness. The claws are important for the attachment to mammals' fur, because they enable a secure grip by mechanical interlocking of the hairs through the claws. Additionally, well-developed pulvilli are able to attach on thicker hairs of Artiodactyla or on smooth substrates such as the skin.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jmor.21523DOI Listing

Publication Analysis

Top Keywords

attachment system
16
claws pulvilli
12
functional morphology
8
attachment
8
hippoboscidae nycteribiidae
8
system hippoboscid
8
hippoboscid species
8
species
5
claws
5
louse flies
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!