In previous studies of the pharmacokinetics and urinary excretion of nine glycopeptides with diverse isoelectric points (pI), as pI decreases, the total systemic and renal clearance, urinary recovery, and volume of distribution decrease, whereas the half-life increases. With glycopeptides of similar pI, clearance decreases and half-life increases with increasing lipophilicity. The present study examines the serum protein binding of these glycopeptide antibiotics in mouse, rat, and human serum and calculates the previously reported pharmacokinetic parameters for these drugs based on unbound concentration. Increased negative charge and lipophilicity increase serum protein binding (90-fold, fu 83% to 0.96%), which decreases the renal clearance and total systemic clearance (90-fold, 16.4 to 0.18 ml/min/kg) of these drugs. Increased serum protein binding also decreases the volume of distribution of these compounds, but this change is relatively small (sixfold, 755 to 131 ml/kg) compared with the change in total systemic clearance causing an increase in elimination half-life (25-fold, 20 to 492 min). The results demonstrate that the large differences in the total systemic clearance and half-life of these glycopeptide antibiotics are primarily due to dramatic differences in serum protein binding and not to differences in the intrinsic elimination processes (enzymes or transport proteins). It appears that the same physical-chemical properties that govern the protein binding and pharmacokinetics of small organic molecules govern the disposition of these high-molecular weight glycopeptide antibiotics.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF01062935DOI Listing

Publication Analysis

Top Keywords

protein binding
24
glycopeptide antibiotics
16
total systemic
16
serum protein
16
systemic clearance
12
binding glycopeptide
8
physical-chemical properties
8
mouse rat
8
rat human
8
human serum
8

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

ECU, Perth, Western Australia, Australia.

Background: The autophagy lysosomal pathway (ALP) and the ubiquitin-proteasome system (UPS) are key proteostasis mechanisms in cells, which are dysfunctional in AD and linked to protein aggregation and neuronal death. Autophagy is over activated in Alzheimer's disease brain whereas UPS is severely impaired. Activating autophagy has received most attention, however recent evidence suggests that UPS can clear aggregate proteins and a potential therapeutic target for AD and protein misfolding diseases.

View Article and Find Full Text PDF

Background: Tau proteins aggregate in a number of neurodegenerative disorders known as tauopathies. Various studies have highlighted the role of microtubule-binding domains in the intracellular aggregation of Tau protein.

Method: Using a library of synthetic VHHs humanized in collaboration with Hybrigenics, we have developed a number of anti-tau VHHs.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Biosplice Therapeutics, Inc., San Diego, CA, USA.

Background: DYRK1A overexpression, common in neurodegenerative diseases like Alzheimer's (AD), contributes to neurofibrillary tangles via Tau protein hyperphosphorylation and amyloid plaque formation, key AD hallmarks. Therefore, DYRK1A has been regarded as a novel target for neurodegenerative diseases. However, developing DYRK1A selective inhibitors has been a difficult challenge due to the highly conserved ATP-binding site of protein kinases, particularly among the CMGC family.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

ADEL Institute of Science & Technology (AIST), ADEL, Inc., Seoul, Korea, Republic of (South).

Background: Abnormal aggregation and accumulation of tau is a hallmark of tauopathy including Alzheimer's disease. Effective targeting of tau for therapeutic purposes requires a clear understanding of its epitope landscape with identification of a key pathogenic tau species. Despite numerous proposed and tested tau epitopes, ranging from the N-terminus to the microtubule-binding region and C-terminus, the most effective target remains elusive.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Yonsei University, Incheon, Incheon, Korea, Republic of (South).

Background: Cyclin Y (CCNY) is a member of cyclin protein family inhibiting long-term synaptic plasticity, which is related to the learning and memory function in neuronal system. Recently, CCNY has been reported to associate with the cognitive deficits in Alzheimer's disease (AD).

Method: In this study, we discovered PFTAIRE peptide to diminish CCNY protein level and to ameliorate cognitive dysfunction in AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!