A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Genome-wide identification of biotin carboxyl carrier subunits of acetyl-CoA carboxylase in Brassica and their role in stress tolerance in oilseed Brassica napus. | LitMetric

AI Article Synopsis

  • The study identified 43 Biotin Carboxyl Carrier Protein (BCCP) genes across five Brassica species, with varying counts of homologs in each species.
  • Phylogenetic analysis revealed five classes of BCCP genes, all containing stress-related elements in their promoter regions, and gene duplication was noted in certain species, highlighting mechanisms of gene family expansion.
  • Functional analysis of selected BnaBCCP genes suggested their significant roles in responding to various biotic and abiotic stresses, providing insights for improving stress tolerance in canola.

Article Abstract

Background: Biotin carboxyl carrier protein (BCCP) is a subunit of Acetyl CoA-carboxylase (ACCase) which catalyzes the conversion of acetyl-CoA to malonyl-CoA in a committed step during the de novo biosynthesis of fatty acids. Lipids, lipid metabolites, lipid-metabolizing and -modifying enzymes are known to play a role in biotic and abiotic stress tolerance in plants. In this regard, an understanding of the Brassica napus BCCP genes will aid in the improvement of biotic and abiotic stress tolerance in canola.

Results: In this study, we identified 43 BCCP genes in five Brassica species based on published genome data. Among them, Brassica rapa, Brassica oleracea, Brassica nigra, Brassica napus and Brassica juncea had six, seven, seven, 10 and 13 BCCP homologs, respectively. Phylogenetic analysis categorized them into five classes, each with unique conserved domains. The promoter regions of all BCCP genes contained stress-related cis-acting elements as determined by cis-element analysis. We identified four and three duplicated gene pairs (segmental) in B. napus and B. juncea respectively, indicating the role of segmental duplication in the expansion of this gene family. The Ka/Ks ratios of orthologous gene pairs between Arabidopsis thaliana and five Brassica species were mostly less than 1.0, implying that purifying selection, i.e., selective removal of deleterious alleles, played a role during the evolution of Brassica genomes. Analysis of 10 BnaBCCP genes using qRT-PCR showed a different pattern of expression because of exposure of the plants to biotic stresses, such as clubroot and sclerotinia diseases, and abiotic stresses such as drought, low temperature and salinity stresses.

Conclusions: The identification and functional analysis of the Brassica BCCPs demonstrated that some of these genes might play important roles in biotic and abiotic stress responses. Results from this study could lay the foundation for a better understanding of these genes for the improvement of Brassica crops for stress tolerance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9578262PMC
http://dx.doi.org/10.1186/s12864-022-08920-yDOI Listing

Publication Analysis

Top Keywords

stress tolerance
16
brassica
13
brassica napus
12
biotic abiotic
12
abiotic stress
12
bccp genes
12
biotin carboxyl
8
carboxyl carrier
8
brassica species
8
gene pairs
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!