Aerosol optical depth (AOD) provides useful information on particulate matter pollution at both regional and global levels. In this study, the long-term datasets of aerosols, meteorological parameters, and enhanced vegetation index (EVI) were used from September 2002 to December 2021 over Turkey. This study examined the spatiotemporal distribution of aerosols and their association with meteorological parameters (temperature (Temp), relative humidity (RH), wind speed (WS)), and EVI over Turkey from 2002 to 2021. Moreover, this study also performed a comparison of AOD retrieved from Aqua with other satellites (Terra, SeaWiFS, and MISR) and ground-based (AERONET) products. The higher mean seasonal AOD (> 0.3) was observed over Southeastern Anatolia Region due to the dust transport from the Saharan Desert and Arabian Peninsula. Moreover, AOD was positively correlated with Temp and WS in the east of Turkey, while negative correlations were observed in the coastal regions. The correlation between AOD and RH was also observed negative in most parts of Turkey. Furthermore, in the coastal region, the correlation between AOD and EVI was found to be positive, whereas a negative correlation was seen over less vegetative areas. The multi-seasonal AOD averages were calculated as 0.187, 0.183, 0.138, and 0.104 for the spring, summer, autumn, and winter seasons, respectively. The most important result of this study is the regional differences in AOD over Turkey. For new studies, AOD should be observed separately for coastal areas and the eastern part of Turkey.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-022-23553-0 | DOI Listing |
PLoS One
January 2025
Crop Research Institute, Prague, Ruzyně, Czech Republic.
The assessment of human perception of the thermal environment is becoming highly relevant in the context of global climate change and its impact on public health. In this study, we aimed to evaluate the suitability of the use of four frequently used thermal comfort indices (thermal indices)-Wet Bulb Global Temperature (WGBT), Heat Index (HI), Physiologically Equivalent Temperature (PET), and Universal Thermal Climate Index (UTCI)-to assess human thermal comfort perception in three large urban parks in Central Europe, using Prague, the capital of the Czech Republic, as a case study. We investigated the relationship between the four indices and the thermal perception of park visitors, while taking into account the effect of the sex, age, and activity of the respondents and the week-time and daytime of their visit (assessed parameters).
View Article and Find Full Text PDFSci Rep
January 2025
College of New Energy and Environment, Jilin University, Changchun, 130012, China.
Land use and land cover changes (LULCC) alter local surface attributes, thereby modifying energy balance and material exchanges, ultimately impacting meteorological parameters and air quality. The North China Plain (NCP) has undergone rapid urbanization in recent decades, leading to dramatic changes in land use and land cover. This study utilizes the 2020 land use and land cover data obtained from the MODIS satellite to replace the default 2001 data in the Weather Research and Forecasting-Community Multiscale Air Quality (WRF-CMAQ) model.
View Article and Find Full Text PDFMethodsX
June 2025
Department of Royal Rainmaking and Agricultural Aviation, Bangkok 10900, Thailand.
Rainfall prediction is a crucial aspect of climate science, particularly in monsoon-influenced regions where accurate forecasts are essential. This study evaluates rainfall prediction models in the Eastern Thailand by examining an optimal lag time associated with the Oceanic Niño Index (ONI). Five deep learning models-RNN with ReLU, LSTM, GRU (single-layer), LSTM+LSTM, and LSTM+GRU (multi-layer)-were compared using mean absolute error (MAE) and root mean square error (RMSE).
View Article and Find Full Text PDFChemosphere
January 2025
Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu Province, 730000, China; Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
Peroxyacetyl Nitrate (CHC(O)ONO, PAN), a typical secondary product of photochemical reactions, is well known to be a better photochemical indicator due to the only secondary photochemical source in the troposphere. Studies on PAN pollution are sparse in northwest China, resulting in a limited understanding of photochemical pollution in recent years. Herein, the measurement of PAN, O, volatile organic compounds (VOCs), NO, other related species, and meteorological parameters were conducted from May 1 to August 31, 2022, at an urban site in Lanzhou.
View Article and Find Full Text PDFSci Total Environ
January 2025
Center for Environmental Radioactivity (CERAD) CoE, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), P.O.Box 5003, NO-1432 Ås, Norway.
Numerical transport models are important tools for nuclear emergency decision makers in that they rapidly provide early predictions of dispersion of released radionuclides, which is key information to determine adequate emergency protective measures. They can also help us understand and describe environmental processes and can give a comprehensive assessment of transport and transfer of radionuclides in the environment. Transport of radionuclides in air and ocean is affected by a number of different physico-chemical processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!