Organic radicals feature unpaired electrons, and these compounds may have applications in biomedical technology and as materials for solar energy conversion. However, unpaired electrons tend to pair up (to form chemical bonds), making radicals unstable and hampering their applications. Here we report an organic radical system that is stable even at 350 °C, surpassing the upper temperature limit (200 °C) observed for other organic radicals. The system reported herein features a sulfur-rich organic linker that facilitates the formation of the radical centers; on the solid-state level, the molecules are crystallized with Eu(III) ions to form a 3D framework featuring stacks of linker molecules. The stacking is, however, somewhat loose and allows the molecules to wiggle and transform into sulfur-stabilized radicals at higher temperatures. In addition, the resulting solid framework remains crystalline, and it is stable to water and air. Moreover, it is black and features strong broad absorption in the visible and near IR region, thereby enhancing both photothermal conversion and solar-driven water evaporation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9576730 | PMC |
http://dx.doi.org/10.1038/s41467-022-33948-9 | DOI Listing |
Environ Sci Technol
January 2025
College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
Interactions between manganese dioxides (MnO) and dissolved organic matter (DOM) have long been the subject of scientific inquiry. However, the effect of MnO crystallinity on the DOM fate remains unclear. Herein, we comprehensively investigate the adsorption, protection, and mineralization of DOM by MnO with various crystallinities (order of crystallinity: γ-30 < γ-90 < γ-120).
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Chemical Engineering, Birla Institute of Technology and Science, Pilani, Rajasthan 333031, India.
Naphthalenediimide (NDI)-based donor-acceptor co-polymers with tunable electronic, optical, mechanical, and transport properties have shown immense potential as n-type conducting polymers in organic (opto)electronics. During the operation, the polymers undergo reduction at different charged states, which alters their (opto)electronic properties mainly due to the formation of the quasiparticles, polaron/bipolaron. The theoretical study based on quantum mechanical calculations can provide us with a detailed understanding of their (opto)electronic properties, which is missing to a great extent.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford OX1 3TA, U.K.
The delocalization length of charge carriers in organic semiconductors influences their mobility and is an important factor in the design of functional materials. Here, we have studied the radical anions of a series of linear and cyclic butadiyne-linked porphyrin oligomers using CW-EPR, H Mims ENDOR and NIR/MIR spectroelectrochemistry together with DFT calculations and multiscale molecular modeling. Low-temperature hyperfine EPR spectroscopy and optical data show that polarons are delocalized nonuniformly over about four porphyrins with most of the spin density on just two units even in the cyclic structures, in which all porphyrin sites are identical.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Westlake University, Chemistry, No.18 Shilongshan Road, 310024, Hangzhou, CHINA.
Efficient methods for synthesizing allenes from readily available starting materials pose a persistent challenge in organic chemistry. In this work, we present a novel two-stage protocol for allene synthesis involving the single-atom insertion into alkenes, facilitated by synergistic photoredox and cobalt catalysis. Diverging from conventional methods such as the Doering-LaFlamme reaction, this photochemical rearrangement approach operates efficiently under mild conditions in a radical-based manner.
View Article and Find Full Text PDFEnviron Technol
January 2025
School of Biological and Environmental Engineering, Chaohu University, Chaohu Regional Collaborative Technology Service Center for Rural Revitalization, Hefei, People's Republic of China.
The widespread existence of sulfapyridine (SPD, a typical representative of sulfonamide) in natural environment has raised increasing interest because its potential to cause antibiotic-resistant genes. In this work, the degradation of SPD during heat-activated peroxodisulfate (heat/PDS) oxidation process was explored. The pseudo-first-order rate constant () of SPD was 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!