Effective models focused on pertinent low-energy degrees of freedom have substantially contributed to our qualitative understanding of quantum materials. An iconic example, the Kondo model, was key to demonstrating that the rich phase diagrams of correlated metals originate from the interplay of localized and itinerant electrons. Modern electronic structure calculations suggest that to achieve quantitative material-specific models, accurate consideration of the crystal field and spin-orbit interactions is imperative. This poses the question of how local high-energy degrees of freedom become incorporated into a collective electronic state. Here, we use resonant inelastic x-ray scattering (RIXS) on CePd to clarify the fate of all relevant energy scales. We find that even spin-orbit excited states acquire pronounced momentum-dependence at low temperature-the telltale sign of hybridization with the underlying metallic state. Our results demonstrate how localized electronic degrees of freedom endow correlated metals with new properties, which is critical for a microscopic understanding of superconducting, electronic nematic, and topological states.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9576770PMC
http://dx.doi.org/10.1038/s41467-022-33468-6DOI Listing

Publication Analysis

Top Keywords

degrees freedom
12
resonant inelastic
8
inelastic x-ray
8
x-ray scattering
8
correlated metals
8
kondo quasiparticle
4
quasiparticle dynamics
4
dynamics observed
4
observed resonant
4
scattering effective
4

Similar Publications

In 2008 the Postgraduate Medical Education and Training Board (PMETB) Review of Oral and Maxillofacial Surgery (OMFS) recommended that OMFS specialty training should start with second-degree studies. This recommendation has not yet happened. Currently, no OMFS controlled places at medical/dental schools are directly linked to OMFS Specialty Training (ST) posts.

View Article and Find Full Text PDF

Elevator fault diagnosis based on digital twin and PINNs-e-RGCN.

Sci Rep

December 2024

College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou, 310018, China.

The rapid development of urbanization has led to a continuous rise in number of elevators. This has led to elevator failures from time to time. At present, although there are some studies on elevator fault diagnosis, they are more or less limited by the lack of data to make the research more superficial.

View Article and Find Full Text PDF

To achieve high-performance trajectory tracking for a manipulator, this study proposes a novel sliding mode control strategy incorporating a nonlinear disturbance observer. The observer is designed to estimate unknown models in real-time, enabling feedforward compensation for various uncertainties such as modeling errors, joint friction, and external torque disturbances. The control law is formulated by integrating the Backstepping method, Lyapunov theory, and global fast terminal sliding mode theory, ensuring global convergence to zero within finite time and enhancing system robustness.

View Article and Find Full Text PDF

Analysis of shoulder motion with inertial sensors in Poland syndrome patients.

Musculoskelet Surg

December 2024

Plastic and Reconstructive Surgery Department, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.

Purpose: Poland syndrome is a congenital malformation characterized by agenesis or hypoplasia of pectoralis muscles. There is a limited literature on how the anatomic anomalies of PS may impact the movement of the shoulder. This study analyzes the effects of absence of the pectoralis muscles on the shoulder kinematic.

View Article and Find Full Text PDF

Terahertz (THz) spectroscopy, an advanced label-free sensing method, offers significant potential for biomolecular detection and quantitative analysis in biological samples. Although broadband fingerprint enhancement compensates for limitations in detection capability and sensitivity, the complex optical path design in operation restricts its broader adoption. This paper proposes a multi-degree-of-freedom stretchable metasurface that supports magnetic dipole resonance to enhance the broadband THz fingerprint detection of trace analytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!