In this paper, we present a cloud service checklist designed to help IT administrators or researchers in academic organizations select the most suitable cloud services. This checklist, which comprises items that we believe IT administrators or researchers in academic organizations should consider when they adopt cloud services, comprehensively covers the issues related to a variety of cloud services, including security, functionality, performance, and law. In response to the increasing demands for storage and computing resources in genome medical science communities, various guidelines for using resources operated by external organizations, such as cloud services, have been published by different academic funding agencies and the Japanese government. However, it is sometimes difficult to identify the checklist items that satisfy the genome medical science community's guidelines, and some of these requirements are not included in the existing checklists. This issue provided our motivation for creating a cloud service checklist customized for genome medical research communities. The resulting customized checklist is designed to help researchers easily find information about the cloud services that satisfy the guidelines in genome medical science communities. Additionally, we explore whether many cloud service providers satisfy the requirements or checklist items in the cloud service checklist for genome medical research by evaluating their survey responses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9574824PMC
http://dx.doi.org/10.1038/s41439-022-00214-9DOI Listing

Publication Analysis

Top Keywords

genome medical
24
cloud service
20
cloud services
20
service checklist
16
medical science
12
cloud
10
checklist
8
checklist designed
8
designed help
8
administrators researchers
8

Similar Publications

Designer Organs: Ethical Genetic Modifications in the Era of Machine Perfusion.

Annu Rev Biomed Eng

January 2025

1Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA;

Gene therapy is a rapidly developing field, finally yielding clinical benefits. Genetic engineering of organs for transplantation may soon be an option, thanks to convergence with another breakthrough technology, ex vivo machine perfusion (EVMP). EVMP allows access to the functioning organ for genetic manipulation prior to transplant.

View Article and Find Full Text PDF

The phylogeographic inference approach aims to connect genomic data with epidemiology to understand the spread and evolution of pathogens using visualization of spatiotemporal reconstructions. Orthohantavirus hantanense (HTNV), the causative agent of hemorrhagic fever with renal syndrome (HFRS), represents a significant global public health concern. Here, we introduce a localized Nextstrain platform for HTNV, offering a comprehensive resource for facilitating spatiotemporal genomic surveillance and the study of evolutionary dynamics of viral genomes.

View Article and Find Full Text PDF

Introduction: Sarcomas are a rare and diverse group of mesenchymal-origin solid tumors, constituting only 1% of adult malignancies and classified into soft tissue and bone sarcomas. For localized disease, surgery and radiotherapy remain the cornerstone treatments. However, systemic options for advanced stages are limited, with an overall survival of approximately 20 months.

View Article and Find Full Text PDF

Coding Variants of the Genitourinary Development Gene Carry High Risk for Prostate Cancer.

JCO Precis Oncol

January 2025

Medical Research Service, Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN.

Purpose: Considerable genetic heterogeneity is currently thought to underlie hereditary prostate cancer (HPC). Most families meeting criteria for HPC cannot be attributed to currently known pathogenic variants.

Methods: To discover pathogenic variants predisposing to prostate cancer, we conducted a familial case-control association study using both genome-wide single-allele and identity-by-descent analytic approaches.

View Article and Find Full Text PDF

Cell-free assays reveal that the HIV-1 capsid protects reverse transcripts from cGAS immune sensing.

PLoS Pathog

January 2025

Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, United States of America.

Retroviruses can be detected by the innate immune sensor cyclic GMP-AMP synthase (cGAS), which recognizes reverse-transcribed DNA and activates an antiviral response. However, the extent to which HIV-1 shields its genome from cGAS recognition remains unclear. To study this process in mechanistic detail, we reconstituted reverse transcription, genome release, and innate immune sensing of HIV-1 in a cell-free system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!