Metasurface-Assisted Wireless Communication with Physical Level Information Encryption.

Adv Sci (Weinh)

School of Electronic Science and Engineering, Nanjing University, Nanjing, 210023, P. R. China.

Published: December 2022

Since the discovery of wireless telegraphy in 1897, wireless communication via electromagnetic (EM) signals has become a standard solution to address increasing demand for information transfer in modern society. With the rapid growth of EM wave manipulation technique, programmable metasurface (PM) has emerged as a new type of wireless transmitter by directly modulating digital information without complex microwave components, thus providing an alternative to simplify the conventional wireless communication system. However, the challenges of improving information security and spectrum utilization still exist. Here, a dual-band metasurface-assisted wireless communication scheme is introduced to provide additional physical channels for the enhancement of information security. The information is divided into several parts and transmitted through different physical channels to accomplish information encryption, greatly reducing the possibility of eavesdropping. As the proof of concept, a dual-channel and high-security wireless communication system based on a 1-bit PM is established to simultaneously transmit two different parts of a picture to two receivers. Experiments show that the transmitted picture can be successfully retrieved only if the received signals of different receivers are synthetized as predefined. The proposed scheme provides a new route of employing PM in information encryption and spectrum utilization of wireless communication.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9731697PMC
http://dx.doi.org/10.1002/advs.202204558DOI Listing

Publication Analysis

Top Keywords

wireless communication
24
metasurface-assisted wireless
8
communication system
8
spectrum utilization
8
physical channels
8
wireless
7
communication
6
communication physical
4
physical level
4
level encryption
4

Similar Publications

Flexible Passive Wireless Sensing Platform with Frequency Mapping and Multimodal Fusion.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China.

As one of the core parts of the Internet-of-things (IOTs), multimodal sensors have exhibited great advantages in fields such as human-machine interaction, electronic skin, and environmental monitoring. However, current multimodal sensors substantially introduce a bloated equipment architecture and a complicated decoupling mechanism. In this work we propose a multimodal fusion sensing platform based on a power-dependent piecewise linear decoupling mechanism, allowing four parameters to be perceived and decoded from the passive wireless single component, which greatly broadens the configurable freedom of a sensor in the IOT.

View Article and Find Full Text PDF

Flexible pressure sensors have shown significant application prospects in fields such as artificial intelligence and precision manufacturing. However, most flexible pressure sensors are often prepared using polymer materials and precise micronano processing techniques, which greatly limits the widespread application of sensors. Here, this work chooses textile material as the construction material for the sensor, and its latitude and longitude structure endows the sensor with a natural structure.

View Article and Find Full Text PDF

This paper presents novel MIMO microstrip patch antennas with dimensions of 40 × 80 × 1.6 mm³ incorporating a decoupling and pattern correction structure (DPCS) designed to mitigate mutual coupling and radiation pattern distortion, operating within 3.6-3.

View Article and Find Full Text PDF

Wireless sensor networks (WSNs) are imperative to a huge range of packages, along with environmental monitoring, healthcare structures, army surveillance, and smart infrastructure, however they're faced with numerous demanding situations that impede their functionality, including confined strength sources, routing inefficiencies, security vulnerabilities, excessive latency, and the important requirement to keep Quality of Service (QoS). Conventional strategies generally goal particular troubles, like strength optimization or improving QoS, frequently failing to provide a holistic answer that effectively balances more than one crucial elements concurrently. To deal with those challenges, we advocate a novel routing framework that is both steady and power-efficient, leveraging an Improved Type-2 Fuzzy Logic System (IT2FLS) optimized by means of the Reptile Search Algorithm (RSA).

View Article and Find Full Text PDF

Wireless energy-responsive systems provide a foundational platform for powering and operating intelligent devices. However, current electronic systems relying on complex components limit their effective deployment in ambient environment and seamless integration of energy harvesting, storage, sensing, and communication. Here, we disclose a coupling effect of electromagnetic wave absorption and moist-enabled generation on carrier transportation and energy interaction regulated by ionic diode effect.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!