Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Reactive red 2 (RR2) azo dye wastewater poses a serious hazard to the water environment health, so using a novel and efficient Electro- Ce(III) (E- Ce(III)) process takes on a critical significance in treating RR2 dye wastewater. In this study, the effects of a variety of single-factor conditions on RR2 removal efficiency were evaluated in depth. The results indicated that the optimal experimental conditions are as reaction temperature of 25 °C, NaSO concentration of 25 mM, Ce(III) concentration of 0.3 mM, pH of 4.0, and current density of 40.0 mA/cm. When the RR2 dye wastewater was treated for 40 min under the optimal experimental conditions, a high removal rate of 99.8% for RR2 was obtained. It is suggested that the background ion PO in the dye wastewater inhibits the E-Ce (III) process, whereas Cl- facilitates this process. Moreover, the yield of Ce(IV) increases with the increase of the current density. At the current density of 40.0 mA/cm, a reasonable energy consumption of 3.85 kW h/gTOC for the process was obtained after the 3-h treatment. The effects of different degradation processes (including Direct Electrooxidation (DEO), single Ce(III), and E-Ce (III)) on RR2 removal efficiency and TOC change were compared. The types of oxidizing substances in the E-Ce (III) process were detected, and the mechanism of RR2 oxidative degradation in the E-Ce (III) process was summarized. The result suggests that the E-Ce (III) process has low power consumption. Meanwhile, in the E-Ce (III) process, free reactive Ce(IV) with strong oxidation is continuously generated, RR2 can be efficiently degraded. And the continuous cycle transformation between Ce(III) and Ce(IV) maintains the strong oxidation of the process. The contribution of free reactive Ce(IV) and DEO to RR2 degradation was obtained as 58.8% and 39.8%, respectively. The combined effect of Ce(IV) and DEO played a major role in the E-Ce (III) process, while ·OH exhibited a relatively weak effect (nearly 1.4%). RR2 was comprised of 13 major intermediates, and the biodegradability of wastewater was improved significantly after treatment, thus facilitating the further mineralization and biodegradation of the products. The E- Ce(III) process is novel, efficient, and environment-friendly, and has a large market application space, suggesting that it can be applied as an efficient, economic, and sustainable water treatment process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2022.114590 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!