Objective: To study the effect of intrauterine injection of C-X-C motif chemokine ligand 12 (CXCL12), also known as a stem cell chemoattractant (stromal cell-derived factor 1), on fertility and endometrial receptivity in mice with endometriosis.

Design: Laboratory study.

Setting: Academic Medical Center.

Animal(s): Fifty-six mice underwent chemotherapy and bone marrow transplantation. Thirty-six of these mice underwent either surgery to induce endometriosis (n = 20) or sham surgery (n = 16).

Intervention(s): Injection of CXCL12 as a potential therapeutic agent to improve fertility in endometriosis.

Main Outcome Measure(s): Pregnancy rate, bone marrow-derived cell (BMDC) recruitment and endometrial receptivity markers.

Result(s): The mice with or without endometriosis received a single uterine injection of either CXCL12 or placebo. Uterine injection of CXCL12 increased the pregnancy rates in a mouse model of endometriosis. Mice were euthanized after delivery, and implantation markers homeobox A11, alpha-v beta-3 integrin, and progesterone receptor were analyzed by immunohistochemistry, whereas green fluorescent protein positive BMDC recruitment was quantified by immunohistochemistry and immunofluorescence. The sham surgery groups without endometriosis had the highest cumulative pregnancy rate (100%) regardless of CXCL12 treatment. The endometriosis group treated with placebo had the lowest pregnancy rate. An increased pregnancy rate was noted in the endometriosis group after treatment with CXCL12. There was also an increase in BMDC recruitment and endometrial expression of progesterone receptor and alpha-v beta-3 integrin in the endometriosis group that received CXCL12 compared with that in the endometriosis group that received placebo.

Conclusion(s): Uterine injection of CXCL12 increased the pregnancy rates in a mouse model of endometriosis. These results suggest that CXCL12 has a potential role as a therapeutic agent in women with infertility related to endometriosis and potentially other endometrial receptivity defects.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.xfss.2022.10.003DOI Listing

Publication Analysis

Top Keywords

injection cxcl12
16
pregnancy rate
16
endometriosis group
16
pregnancy rates
12
endometrial receptivity
12
bmdc recruitment
12
uterine injection
12
increased pregnancy
12
endometriosis
11
cxcl12
9

Similar Publications

This study aimed to determine if local injection of CXCL12 reduces sphincter fibrosis, restores sphincter muscle content, vascularization, and innervation, and recruits progenitor cells in a rabbit model of anal sphincter injury and incontinence. Adult female rabbits were assigned to 3 groups: uninjured/no treatment (control), injured/treated (treated), and injured/no treatment (untreated) (n=4 each). Injured groups were anesthetized and a section of external anal sphincter was removed at the 9:00 o'clock position.

View Article and Find Full Text PDF

While low-dose cannabinoid 2 (CB2) receptor agonists attenuate morphine tolerance in cancer pain models, chemokine ligand 12 (CXCL12)/chemokine receptor 4 (CXCR4) expression induces morphine tolerance. Whether CB2 receptor agonists attenuate morphine tolerance by modulating CXCL12/CXCR4 signaling or whether CXCL12/CXCR4 signaling affects the mu opioid receptor (MOR) in the development of morphine tolerance in cancer pain remains unclear. In this study, we investigated the attenuation of morphine tolerance by a non-analgesic dose of the CB2 receptor agonist AM1241, focusing specifically on the modulation of CXCL12/CXCR4 signaling and its effect on the MOR.

View Article and Find Full Text PDF

Background: Chronic pain poses a clinical challenge due to its associated costly disability and treatment needs. Determining how pain transitions from acute to chronic is crucial for effective management. Upregulation of the chemokine C-X-C motif ligand 12 (CXCL12) in nociceptive pathway is associated with chronic pain.

View Article and Find Full Text PDF

Background: Osteoporosis is characterized by low systemic bone mineral content and destruction of bone microarchitecture. Promoting bone regeneration and reversing its loss by infusion of exogenous bone marrow mesenchymal stem cells (BMSCs) is a potentially effective treatment for osteoporosis. However, their limited migration to target organs reduces the therapeutic effect of the cells.

View Article and Find Full Text PDF

It has been demonstrated that CXCL12 inhibits hair growth via CXCR4, and its neutralizing antibody (Ab) increases hair growth in alopecia areata (AA). However, the molecular mechanisms have not been fully elucidated. In the present study, we further prepared humanized CXCL12 Ab for AA treatment and investigated underlying molecular mechanisms using single-cell RNA sequencing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!