Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9703893 | PMC |
http://dx.doi.org/10.1055/s-0042-1755215 | DOI Listing |
Br J Hosp Med (Lond)
January 2025
Department of Geriatric Medicine, Royal Free Hospital, London, UK.
Parkinson's disease (PD) is a common neurodegenerative condition that can lead to problems swallowing. Individuals living with PD may be unable to take medications orally for various reasons including acute or chronic dysphagia, non-PD related causes and being placed nil-by-mouth for elective reasons. This article outlines a five-step approach to managing an individual living with PD who is unable to take oral medication acutely.
View Article and Find Full Text PDFMetab Brain Dis
January 2025
Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Hale Building for Transformative Medicine, Room 10006, 60 Fenwood Road, Boston, MA, 02115, USA.
α-Synuclein (αS) is a 140 amino-acid neuronal protein highly enriched in presynaptic nerve terminals. Its progressive accumulation in Lewy bodies and neurites is the hallmark of Parkinson's disease (PD). A growing number of studies highlights a critical interplay between lipid metabolism and αS biology.
View Article and Find Full Text PDFCurr Issues Mol Biol
December 2024
Immunology Research Lab & BK21-Four Educational Research Group for Age-Associated Disorder Control Technology, Department of Biological Science, Chosun University, Gwangju 61452, Republic of Korea.
Neuroinflammation is a complex and dynamic response of the central nervous system (CNS) to injury, infection, and disease. While acute neuroinflammation plays a protective role by facilitating pathogen clearance and tissue repair, chronic and dysregulated inflammation contributes significantly to the progression of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and Multiple Sclerosis. This review explores the cellular and molecular mechanisms underlying neuroinflammation, focusing on the roles of microglia, astrocytes, and peripheral immune cells.
View Article and Find Full Text PDFCells
January 2025
Department of Physiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea.
Phosphodiesterase (PDE) enzymes regulate intracellular signaling pathways crucial for brain development and the pathophysiology of neurological disorders. Among the 11 PDE subtypes, PDE4 and PDE5 are particularly significant due to their regulation of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) signaling, respectively, which are vital for learning, memory, and neuroprotection. This review synthesizes current evidence on the roles of PDE4 and PDE5 in neurological health and disease, focusing on their regulation of second messenger pathways and their implications for brain function.
View Article and Find Full Text PDFCell Biol Toxicol
January 2025
Department of Environmental Medicine, School of Medicine, Chongqing University, Chongqing, China.
Manganese (Mn) is a neurotoxin that has been etiologically linked to the development of neurodegenerative diseases in the case of overexposure. It is widely accepted that overexposure to Mn leads to manganism, which has clinical symptoms similar to Parkinson's disease (PD), and is referred to as parkinsonism. Astrocytes have been reported to scavenge and degrade extracellular α-synuclein (α-Syn) in the brain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!