Myeloid-derived suppressor cells (MDSCs), a population derived from immature myeloid progenitors, are present in the tumors of patients and highly protumorigenic. However, the molecular mechanisms regulating MDSC infiltration remain unclear. Neddylation pathway is overactivated in multiple cancers and has a significant role in tumor progression. We established a subcutaneous transplantation model of Lewis lung cancer in mice and showed that inactivation of neddylation pathway inhibits MDSC infiltration and impairs lung cancer growth. A high expression level of neuronal precursor cell-expressed developmentally downregulated protein 8 (NEDD8) is positively correlated with MDSC infiltration in human lung adenocarcinomas (LUADs). Moreover, inactivation of neddylation pathway inhibits the expression of murine CXCL5 (mCXCL5; human homolog CXCL6, hCXCL6), an important cytokine implicated in MDSC recruitment. Mechanistically, inactivation of neddylation pathway inhibits activity of Cullin-RING ligase 1, a typical neddylation substrate, and induces accumulation of phosphorylated IκBα and subsequent blockage of NF-κB translocation, thus suppressing transcriptional activation of mCxcl5 or hCXCL6. Collectively, our data suggest that neddylation-NF-κB-mCXCL5 axis is involved in MDSC recruitment to the tumor sites and demonstrate that neddylation pathway is a good therapeutic target for patients with LUAD, particularly those receiving anti-MDSC therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2022.109329DOI Listing

Publication Analysis

Top Keywords

neddylation pathway
24
lung cancer
12
mdsc infiltration
12
inactivation neddylation
12
pathway inhibits
12
myeloid-derived suppressor
8
mdsc recruitment
8
neddylation
7
mdsc
5
pathway
5

Similar Publications

Prolyl Hydroxylase Domain protein 2 (PHD2) targets Hypoxia Inducible Factor alpha subunits (HIFα) for oxygen-dependent proline hydroxylation that leads to subsequent ubiquitination and degradation of HIFα. In addition to HIF proteins, growing evidence suggested that PHD2 may exert its multifaceted function through hydroxylase-dependent or independent activities. Given the critical role of PHD2 in diverse biological processes, it is important to comprehensively identify potential PHD2 interacting proteins.

View Article and Find Full Text PDF

Inhibition of the neddylation E2 enzyme UBE2M in macrophages protects against E. coli-induced sepsis.

J Biol Chem

December 2024

Department of Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Multiple Organ Failure (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang, China. Electronic address:

UBE2M, an essential neddylation E2 enzyme, has been implicated in the pathogenesis of various diseases, including cancers, viral infections, and obesity. However, whether UBE2M is involved in the pathogenesis of bacterial sepsis remains unclear. In an Escherichia coli (E.

View Article and Find Full Text PDF

As a critical member of the Coronin family, Coronin 1A (CORO1A) plays a crucial role in the progression of triple-negative breast cancer (TNBC). However, CORO1A is typically considered "undruggable" due to its smooth surface and complex protein-protein interactions (PPIs). Molecular glues have emerged as one of the most effective strategies to rapidly degrade such "undruggable" targets.

View Article and Find Full Text PDF

Neddylation, as a post-translational modification, has garnered significant attention in various tumor types recently. Few studies have investigated the involvement of neddylation-related genes (NRGs) in cutaneous melanoma (CM). Our study aims to identify prognostic NRGs and investigate their potential roles in CM.

View Article and Find Full Text PDF

The capacity to regenerate lost organs is widespread among animals, and yet the number of species in which regeneration has been experimentally probed using molecular and functional assays is very small. This is also the case for insects, for which we still lack a complete picture of their regeneration mechanisms and the extent of their conservation. Here, we contribute to filling this gap by investigating regeneration in the mayfly .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!