Recent record rainfall and flood events have prompted increased attention to flood impacts on human systems. Information regarding flood effects on food security is of particular importance for humanitarian organizations and is especially valuable across Africa's rural areas that contribute to regional food supplies. We quantitatively evaluate where and to what extent flooding impacts food security across Africa, using a Granger causality analysis and panel modeling approaches. Within our modeled areas, we find that ∼12% of the people that experienced food insecurity from 2009 to 2020 had their food security status affected by flooding. Furthermore, flooding and its associated meteorological conditions can simultaneously degrade food security locally while enhancing it at regional spatial scales, leading to large variations in overall food security outcomes. Dedicated data collection at the intersection of flood events and associated food security measures across different spatial and temporal scales are required to better characterize the extent of flood impact and inform preparedness, response, and recovery needs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9618118PMC
http://dx.doi.org/10.1073/pnas.2119399119DOI Listing

Publication Analysis

Top Keywords

food security
28
food
9
security africa
8
flood events
8
security
7
flood
5
impact flooding
4
flooding food
4
africa record
4
record rainfall
4

Similar Publications

Improved ovalbumin accurate quantitative performance in processed foods by full-length isotope-labeled protein.

Food Chem

December 2024

National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, Beijing 100193, China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China. Electronic address:

Ovalbumin (OVA) is a high-risk allergen with complex tertiary structure in food samples. Here, we developed an accurate UPLC-MS/MS-based assay to improve OVA quantitative performance in processed foods. Full-length isotope-labeled OVA proteins (OVA-I) were synthesized using stable isotope labeling by amino acids in cell culture (SILAC) technique and employed as functional internal standards to ensure similar cleavage sites between internal standards and analytes.

View Article and Find Full Text PDF

An agrivoltaic system (AVS), wherein crops and electricity are simultaneously produced on the same agricultural land, contributes to renewable energy production and food security. AVS is expected to expand energy production in rural areas; however, its energy balance has not been comprehensively investigated. In this study, the energy balance of an AVS established in 2021 in the paddy fields on Shonai Plain was determined.

View Article and Find Full Text PDF

Plant diseases constantly threaten crops and food systems, while global connectivity further increases the risks of spreading existing and exotic pathogens. Here, we first explore how an integrative approach involving plant pathway knowledgegraphs, differential gene expression data, and biochemical data informing Raman spectroscopy could be used to detect plant pathways responding to pathogen attacks. The Plant Reactome (https://plantreactome.

View Article and Find Full Text PDF

Smallest microplastics intensify maize yield decline, soil processes and consequent global warming potential.

J Hazard Mater

December 2024

State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.

Microplastic pollution seriously affects global agroecosystems, strongly influencing soil processes and crop growth. Microplastics impact could be size-dependent, yet relevant field experiments are scarce. We conducted a field experiment in a soil-maize agroecosystem to assess interactions between microplastic types and sizes.

View Article and Find Full Text PDF

Integration of DNA-Decorated Hapten in Emergency Immunoassays for Antibody and Small-Molecule Detection: A Review.

J Agric Food Chem

January 2025

National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, and Beijing Laboratory for Food Quality and Safety, China Agricultural University, Beijing 100193, People's Republic of China.

DNA-decorated hapten (DDH)-based immunoassays have emerged, demonstrating supreme advantages in sensing applications because of their excellent sensitivity, specificity, and reliability. DDH combines both a recognition element (hapten) and a signal transduction element (DNA portion) with its highly programmable DNA structure enabling the trigger of signal transduction following a recognition event, thereby introducing a novel signal transduction mechanism to immunoassays. In this review, we provide a critical overview of recent research in the DDH-based immunoassays, which are designed to detect specific small molecules and antibodies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!