Measuring the relative abundances of heavy stable isotopes of the elements C, H, N, and O in proteins is of interest in environmental science, archeology, zoology, medicine, and other fields. The isotopic abundance measurements of the fine structure of immonium ions with ultrahigh resolution mass spectrometry obtained in gas-phase fragmentation of polypeptides have previously uncovered anomalous deuterium enrichment in (hydroxy)proline of bone collagen in marine mammals. Here, we provide a detailed description and validation of this approach and demonstrate per mil-range precision of isotopic ratio measurements in aliphatic residues from proteins and cell lysates. The analysis consists of proteomics-type experiment demanding sub-microgram amounts of a protein sample and providing concomitantly protein sequence data allowing one to verify sample purity and establish its identity. A novel software tool protein amino acid-resolved isotopic ratio mass spectrometry (PAIR-MS) is presented for extracting isotopic ratio data from the raw data files acquired on an Orbitrap mass spectrometer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9631351 | PMC |
http://dx.doi.org/10.1021/acs.analchem.2c03119 | DOI Listing |
Environ Sci Technol
January 2025
Department of Environmental and Resource Engineering, Technical University of Denmark, DTU Risø Campus, DK-4000 Roskilde, Denmark.
U and U are proven to be useful tracers to investigate upper-ocean hydrodynamics due to their source-specific isotopic ratios and conservative behaviors in the open ocean. However, their application in the Pacific Ocean has been limited by scarce observations and unclear source-term information. Here, we present our observations of U and U in the western North Pacific Subtropical Gyre (NPStG), showing the presence of a source of anthropogenic U featured by a low U/U ratio (∼1 × 10), which is an order of magnitude lower than the global fallout signature (∼2 × 10).
View Article and Find Full Text PDFSci Rep
January 2025
Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
Phytotoxic air pollutants such as atmospheric nitrogen dioxide (NO) are among the major stresses affecting tree photosynthesis in urban areas. We clarified the relationship between NO concentrations and photosynthetic function for three major urban trees, Prunus × yedoensis, Rhododendron pulchrum, and Ginkgo biloba, planted in Kyoto and surrounding cities, combining our published data and new data collected from 2020 to 2023. High NO increased long-term water use efficiency for all species.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
State Key Laboratory of Loess and Quaternary Geology, Xi'an AMS Center, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, PR China; Shaanxi Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Xi'an 710061, PR China. Electronic address:
Radiation risk through seafood consumption is a big public concern under the discharge of nuclear contaminated water. Plutonium is an important radionuclide in view of radiation risk due to its high radiological and chemical toxicity, as well as consistent presence in the environment. The distribution and level of plutonium isotopes (Pu, Pu) in marine biota collected along the coast of China in 2022-2023 were investigated.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
March 2025
School of Earth, Environment & Society, McMaster University, Hamilton, Ontario, Canada.
Rationale: Carbonate minerals are one of the most popular samples for an automated sample preparation system for CF-IRMS, such as GasBench II and iso FLOW, but no standardized analytical protocols exist. This study gives guidelines on optimal analytic conditions for carbon and oxygen isotope analysis of Ca-Mg carbonates when using the carbonate-phosphoric acid reaction method.
Methods: Calcite (CaCO-McMaster Carrara), dolomite (CaMg(CO)-MRSI Dolomite), and magnesite (MgCO-ROM Brazil Magnesite) with two grain size fractions (< 74 and 149-250 μm) were reacted with 103% (specific gravity of 1.
Alzheimers Dement
December 2024
Huntington Medical Research Institutes, Pasadena, CA, USA.
Background: Dicarboxylic acids (DCAs) are critically important for intermediate metabolism. Since mitochondrial dysfunction and energy dysregulation are associated with AD pathology, we hypothesize that fluctuations in plasma DCAs would accompany AD pathology.
Method: In an ongoing brain-aging study, we recruited older adults (>65 years) classified as cognitively healthy (CH) after neuropsychological testing.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!