Background: Bacillus anthracis, the causative agent for anthrax, poses a potential bioterrorism threat and is capable of causing mass morbidity and mortality. Antimicrobials are the mainstay of postexposure prophylaxis (PEP) and treatment of anthrax. We conducted this safety review of 24 select antimicrobials to identify any new or emerging serious or severe adverse events (AEs) to help inform their risk-benefit evaluation for anthrax.
Methods: Twenty-four antimicrobials were included in this review. Tertiary data sources (e.g. Lactmed, Micromedex, REPROTOX) were reviewed for safety information and summarized to evaluate the known risks of these antimicrobials. PubMed was also searched for published safety information on serious or severe AEs with these antimicrobials; AEs that met inclusion criteria were abstracted and reviewed.
Results: A total of 1316 articles were reviewed. No consistent observations or patterns were observed among the abstracted AEs for a given antimicrobial; therefore, the literature review did not reveal evidence of new or emerging AEs that would add to the risk-benefit profiles already known from tertiary data sources.
Conclusions: The reviewed antimicrobials have known and/or potential serious or severe risks that may influence selection when recommending an antimicrobial for PEP or treatment of anthrax. Given the high fatality rate of anthrax, the risk-benefit evaluation favors use of these antimicrobials for anthrax. The potential risks of antimicrobials should not preclude these reviewed antimicrobials from clinical consideration for anthrax but rather guide appropriate antimicrobial selection and prioritization across different patient populations with risk mitigation measures as warranted.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9649414 | PMC |
http://dx.doi.org/10.1093/cid/ciac592 | DOI Listing |
Microorganisms
December 2024
Targeted Therapy Team, Institute for Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
The COVID-19 and mpox crisis has reminded the world of the potentially catastrophic consequences of biological agents. Aside from the natural risk, biological agents can also be weaponized or used for bioterrorism. Dissemination in a population or among livestock could be used to destabilize a nation by creating a climate of terror, by negatively impacting the economy and undermining institutions.
View Article and Find Full Text PDFDiabetol Metab Syndr
December 2024
NHC Key Laboratory of Hormones and Development (Tianjin Medical University), Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
Objectives: Among all the diabetes complications brought on by persistent inflammation is diabetic kidney disease (DKD). One essential method of the inflammatory response's programmed cell death is anthrax. One of the main causes of diabetic renal disease progression in a high-glycemic environment is the lysis of renal resident cells.
View Article and Find Full Text PDFDiagn Pathol
December 2024
Department of Pathology, The First People's Hospital of Shizuishan, Affiliated to Ningxia Medical University, Shizuishan, China.
Anthrax is an acute infectious disease caused by Bacillus anthracis, which can infect various animals and humans. Cutaneous anthrax primarily presents as infiltrative, edematous erythema, surface vesicles, hemorrhagic vesicles, and necrotic eschar; some patients may also experience systemic symptoms such as fever and leukocytosis. With economic development and improvements in public health conditions, naturally occurring cases of cutaneous anthrax have significantly decreased, leading to limited reports on the pathological manifestations of this disease.
View Article and Find Full Text PDFMil Med
December 2024
Division of Clinical Research and Medical Management (CRMM), Institute of Nuclear Medicine & Allied Sciences (INMAS), DRDO, Delhi 110054, India.
Introduction: Anthrax, caused by the bacterium Bacillus anthracis, stands as a formidable threat with both natural and bioterrorism-related implications. Its ability to afflict a wide range of hosts, including humans and animals, coupled with its potential use as a bioweapon, underscores the critical importance of understanding and advancing our capabilities to combat this infectious disease. In this context, exploring futuristic approaches becomes imperative, as they hold the promise of not only addressing current challenges but also ushering in a new era in anthrax management.
View Article and Find Full Text PDFPNAS Nexus
December 2024
Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA.
Nanobody (Nb)-induced disassembly of surface array protein (Sap) S-layers, a two-dimensional paracrystalline protein lattice from , has been presented as a therapeutic intervention for lethal anthrax infections. However, only a subset of existing Nbs with affinity to Sap exhibit depolymerization activity, suggesting that affinity and epitope recognition are not enough to explain inhibitory activity. In this study, we performed all-atom molecular dynamics simulations of each Nb bound to the Sap binding site and trained a collection of machine learning classifiers to predict whether each Nb induces depolymerization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!