Introduction: Metabolic disorder promotes premature senescence and poses more severe cardiac dysfunction in females than males. Although endurance exercise (EXE) has been known to confer cardioprotection against metabolic diseases, whether EXE-induced cardioprotection is associated with mitigating senescence in females remains unknown. Thus, the aim of the present study was to examine metabolic disorder-induced cardiac anomalies (cellular senescence, metabolic signaling, and autophagy) using a mouse model of obese/type 2 diabetes induced by a high-fat/high-fructose (HFD/HF) diet.

Methods: Female C57BL/6 mice (10 wk old) were assigned to three groups ( n = 11/group): normal diet group (CON), HFD/HF group, and HFD/HF diet + endurance exercise (HFD/HF + EXE) group. Upon confirmation of hyperglycemia and overweight after 12 wk of HFD/HF diet, mice assigned to HFD/HF + EXE group started treadmill running exercise (60 min·d -1 , 5 d·wk -1 for 12 wk), with HFD/HF diet continued.

Results: EXE ameliorated HFD/HF-induced body weight gain and hyperglycemia, improved insulin signaling and glucose transporter 4 (GLUT4) levels, and counteracted cardiac disruption. EXE reversed HFD/HF-induced myocyte premature senescence (e.g., prevention of p53, p21, p16, and lipofuscin accumulation), resulting in suppression of a senescence-associated secretory phenotype such as inflammation (tumor necrosis factor α and interleukin-1β) and oxidative stress (protein carbonylation). Moreover, EXE restored HFD/HF-induced autophagy flux deficiency, evidenced by increased LC3-II concomitant with p62 reduction and restoration of lysosome function-related proteins (LAMP2, CATHEPSIN L, TFEB, and SIRT1). More importantly, EXE retrieved HFD/HF-induced apoptosis arrest (e.g., increased cleaved CASPASE3, PARP, and TUNEL-positive cells).

Conclusions: Our study demonstrated that EXE-induced antisenescence phenotypes, autophagy restoration, and promotion of propitiatory cell removal by apoptosis play a crucial role in cardiac protection against metabolic distress-induced cardiac disruption.

Download full-text PDF

Source
http://dx.doi.org/10.1249/MSS.0000000000003058DOI Listing

Publication Analysis

Top Keywords

cardiac disruption
12
hfd/hf diet
12
autophagy restoration
8
metabolic disorder-induced
8
disorder-induced cardiac
8
premature senescence
8
endurance exercise
8
mice assigned
8
hfd/hf exe
8
exe group
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!