Hepatocyte growth factor (HGF) is the natural ligand of the MET receptor tyrosine kinase. This ligand-receptor couple is essential for the maturation process of hepatocytes. Previously, the rational design of a synthetic protein based on the assembly of two K1 domains from HGF led to the production of a potent and stable MET receptor agonist. In this study, we compared the effects of K1K1 with HGF during the differentiation of hepatocyte progenitors derived from human induced pluripotent stem cells (hiPSCs). In vitro, K1K1, in the range of 20 to 200 nM, successfully substituted for HGF and efficiently activated ERK downstream signaling. Analysis of the levels of hepatocyte markers showed typical liver mRNA and protein expression (HNF4α, albumin, alpha-fetoprotein, CYP3A4) and phenotypes. Although full maturation was not achieved, the results suggest that K1K1 is an attractive candidate MET agonist suitable for replacing complex and expensive HGF treatments to induce hepatic differentiation of hiPSCs.

Download full-text PDF

Source
http://dx.doi.org/10.1111/dgd.12818DOI Listing

Publication Analysis

Top Keywords

pluripotent stem
8
stem cells
8
met receptor
8
hgf
6
novel agonist
4
agonist hgf
4
hgf receptor
4
met
4
receptor met
4
met promotes
4

Similar Publications

Huntington's disease (HD) is an inherited neurodegenerative disease characterized by uncontrolled movements, emotional disturbances, and progressive cognitive impairment. It is estimated to affect 4.3 to 10.

View Article and Find Full Text PDF

The hair follicle is a complex of mesenchymal and epithelial cells acquiring different properties and characteristics responsible for fulfilling its inductive and regenerative role. The epidermal and dermal crosstalk induces morphogenesis and maintains hair follicle cycling properties. The hair follicle is enriched with pluripotent stem cells, where dermal papilla (DP) cells and dermal sheath (DS) cells constitute the dermal compartment and the epithelial stem cells existing in the bulge region exert their regenerative role by mediating the epithelial-mesenchymal interaction (EMI).

View Article and Find Full Text PDF

Brain organoid models have greatly facilitated our understanding of human brain development and disease. However, key brain cell types, such as microglia, are lacking in most brain organoid models. Because microglia have been shown to play important roles in brain development and pathologies, attempts have been made to add microglia to brain organoids through co-culture.

View Article and Find Full Text PDF

The nuclear matrix, a proteinaceous gel composed of proteins and RNA, is an important nuclear structure that supports chromatin architecture, but its role in human pluripotent stem cells (hPSCs) has not been described. Here we show that by disrupting heterogeneous nuclear ribonucleoprotein U (HNRNPU) or the nuclear matrix protein, Matrin-3, primed hPSCs adopted features of the naive pluripotent state, including morphology and upregulation of naive-specific marker genes. We demonstrate that HNRNPU depletion leads to increased chromatin accessibility, reduced DNA contacts and increased nuclear size.

View Article and Find Full Text PDF

A well-balanced ion channel trafficking machinery is paramount for the normal electromechanical function of the heart. Ion channel variants and many drugs can alter the cardiac action potential and lead to arrhythmias by interfering with mechanisms like ion channel synthesis, trafficking, gating, permeation, and recycling. A case in point is the Long QT syndrome (LQTS), a highly arrhythmogenic disease characterized by an abnormally prolonged QT interval on ECG produced by variants and drugs that interfere with the action potential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!