Understanding how groundwater is formed and evolves is critical for water resource exploitation and utilization. In this study, hydrochemistry and stable isotope tracing techniques were adopted to determine the key factors influencing groundwater chemical evolution in Feng County. A total of fourteen wells and five surface water samples were investigated in November 2021. The δD and δO compositions show that both surface water and groundwater are recharged from atmospheric precipitation. The dominating order of cations and anions in groundwater appears to be Na > Mg > Ca > K and HCO > SO > Cl > NO > F, respectively. The groundwater hydrochemical facies are mainly characterized by HCO-Ca-Mg and SO-Cl-Na types. The chemical evolution of groundwater is dominated by water-rock interaction and cation exchange reactions. The major ions in groundwater are mainly controlled by various geogenic processes including halite, gypsum, calcite, dolomite, Glauber's salt, feldspar, and fluorite dissolution/precipitation. Furthermore, the abundant fluoride-bearing sediments, together with low Ca, promote the formation of high F groundwater. Approximately 85.7% and 28.6% of groundwater samples exceeded the permissible limit for F and NO respectively. Apart from geogenic F, human interventions (i.e., industrial fluoride-containing wastewater discharge and agricultural phosphate fertilizer uses) also regulate the F enrichment in the shallow groundwater. Nitrate pollution of the groundwater may be attributed to domestic waste and animal feces. Our findings could provide valuable information for the sustainable exploitation of groundwater in the study area and the development of effective management strategies by the authorities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-022-23516-5 | DOI Listing |
Environ Monit Assess
January 2025
College of Earth Sciences, Guilin University of Technology, Guilin, 541006, China.
Identifying key factors that control the chemical evolution of groundwater along groundwater flow direction is essential in ensuring the safety of groundwater resources in upper watersheds and lower plains. In this study, the ion ratio, multivariate statistics, and inverse geochemical modeling were used to investigate and explore the chemical characteristics of groundwater and factors driving the formation of groundwater components in the plain area of Deyang City, China. The chemical type of groundwater in the area was dominated by the HCO-Ca type, and the variation in groundwater chemical composition was mainly affected by water-rock interaction and human interference.
View Article and Find Full Text PDFGround Water
January 2025
Department of Civil, Geological, and Environmental Engineering, University of Saskatchewan, Saskatoon, SK, Canada.
Continental glaciations during the Pleistocene Epoch created complex systems of aquifers and aquitards across many northern regions of the Earth. The low hydraulic conductivities of glacial till aquitards suggest that limited recharge will reach the underlying aquifers, potentially preserving old groundwaters. Here, we characterize the recharge history in intertill and buried valley aquifers in Saskatchewan, Canada using C, H, He δH, δO, and major ions.
View Article and Find Full Text PDFEnviron Sci Ecotechnol
January 2025
Earth Systems and Global Change Group, Environmental Sciences Department, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen, 6708 PB, the Netherlands.
Antibiotics are extensively used in livestock production to prevent and treat diseases, but their environmental impact through contamination of rivers and groundwater is a growing concern. The specific antibiotics involved, their sources, and their geographic distribution remain inadequately documented, hindering effective mitigation strategies for river and groundwater pollution control caused by livestock production. Here we develope the spatially explicit MARINA-Antibiotics (China-1.
View Article and Find Full Text PDFHeliyon
December 2024
Department of Computer Science and Engineering, Anand Engineering College, Agra, India.
Groundwater contamination with fluoride is a considerable public health concern that affects millions of people worldwide. The rapid growth of urbanization has led to increase in groundwater contamination. The health risk assessment focuses on both acute and chronic health consequences as it investigates the extent and effects of fluoride exposure through contaminated groundwater.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Federal Research Center of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of Sciences, 60-let Oktyabrya prospect, 7, bld. 2, Moscow, Russia, 117312.
A novel Gram-negative, motile, rod-shaped bacterium, designated 4137-cl, was isolated from a thermal spring of North Ossetia (Russian Federation). Strain 4137-cl grew at 30-50 °C (optimum 42 °C) with 0-3.5% NaCl (optimum 0-0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!