A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Detection and Quantification of Antimicrobial-Resistant Cells in Aquatic Environments by Bioorthogonal Noncanonical Amino Acid Tagging. | LitMetric

Detection and Quantification of Antimicrobial-Resistant Cells in Aquatic Environments by Bioorthogonal Noncanonical Amino Acid Tagging.

Environ Sci Technol

CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.

Published: November 2022

Aquatic environments are important reservoirs of antibiotic wastes, antibiotic resistance genes, and bacteria, enabling the persistence and proliferation of antibiotic resistance in different bacterial populations. To prevent the spread of antibiotic resistance, effective approaches to detect antimicrobial susceptibility in aquatic environments are highly desired. In this work, we adopt a metabolism-based bioorthogonal noncanonical amino acid tagging (BONCAT) method to detect, visualize, and quantify active antimicrobial-resistant bacteria in water samples by exploiting the differences in bacterial metabolic responses to antibiotics. The BONCAT approach can be applied to rapidly detect bacterial resistance to multiple antibiotics within 20 min of incubation, regardless of whether they act on proteins or DNA. In addition, the combination of BONCAT with the microscope enables the intuitive characterization of antibiotic-resistant bacteria in mixed systems at single-cell resolution. Furthermore, BONCAT coupled with flow cytometry exhibits good performance in determining bacterial resistance ratios to chloramphenicol and population heterogeneity in hospital wastewater samples. In addition, this approach is also effective in detecting antibiotic-resistant bacteria in natural water samples. Therefore, such a simple, fast, and efficient BONCAT-based approach will be valuable in monitoring the increase and spread of antibiotic resistance within natural and engineered aquatic environments.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.2c05024DOI Listing

Publication Analysis

Top Keywords

aquatic environments
16
antibiotic resistance
16
bioorthogonal noncanonical
8
noncanonical amino
8
amino acid
8
acid tagging
8
spread antibiotic
8
water samples
8
bacterial resistance
8
antibiotic-resistant bacteria
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!