Pigeon pea protein was sequentially digested with pepsin followed by pancreatin and the hydrolysate separated into 18 fractions using reversed-phase high-performance liquid chromatography. Fractions were analyzed for in vitro antioxidant properties (radical scavenging, metal chelation, and ferric iron reducing ability) in addition to inhibition of renin and angiotensin-converting enzyme (ACE). The most active fractions were analyzed by mass spectroscopy followed by identification of 10 peptide sequences (7 pentapeptides and 3 hexapeptides). All the peptides showed a wide range of multifunctional activity by scavenging hydroxyl (31.9-66.8%) and superoxide (25.6-100.0%) radicals in addition to ACE inhibition (7.4-100%) with significant (p < .05) differences between the peptides. AGVTVS, TKDIG, TSRLG, GRIST, and SGEKI were the most active; however, AGVTVS had the highest hydrophobic residue and exhibited the strongest activity against ACE, renin as well as superoxide and hydroxyl radicals. PRACTICAL APPLICATIONS: There is an increasing attraction of researchers to food peptides especially from legume proteins. Enzymatic digestion as well as high performance liquid chromatography (HPLC) purification has become an important process used to separate peptides with significant biological activities and health-promoting effects. There is useful information regarding the bioactive and functional (in vitro antioxidant, antidiabetic, in vitro/in vivo antihypertensive) properties of hydrolyzed and ultra-filtered pigeon pea fractions but scant research output still exists for purified peptides from pigeon pea establishing their therapeutic potential. The present study aimed to separate peptide fractions from pigeon pea hydrolysate and identify available amino acid sequences from the parent protein. Therefore, peptide sequences generated from the most bioactive fractions showed prospects for the expanded industrial utilization of pigeon pea. Further promoting its application as functional ingredient or additive for alleviating angiotensin-converting enzyme-related diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jfbc.14485 | DOI Listing |
Plants (Basel)
November 2024
Department of Biochemistry, University of Nairobi, P.O. Box 30197, Nairobi 00100, Kenya.
Molecules
November 2024
School of Public Health and Health Management, Gannan Medical University, Ganzhou 341000, China.
Pigeon pea ( (L.) Millsp.) is a traditional Chinese medicinal plant widely utilized in folk medicine due to its significant pharmacological and nutritional properties.
View Article and Find Full Text PDFMicroorganisms
November 2024
Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa.
Microbes such as bacteria and fungi play important roles in nutrient cycling in soils, often leading to the bioavailability of metabolically important mineral elements such as nitrogen (N), phosphorus (P), iron (Fe), and zinc (Zn). Examples of microbes with beneficial traits for plant growth promotion include mycorrhizal fungi, associative diazotrophs, and the N-fixing rhizobia belonging to the α, β and γ class of Proteobacteria. Mycorrhizal fungi generally contribute to increasing the surface area of soil-root interface for optimum nutrient uptake by plants.
View Article and Find Full Text PDFThe importance for multi-dimensional priority-setting of agricultural innovations is growing, given that agricultural technologies usually play multiple roles for smallholder farmers. This study assesses agricultural technologies based on their multi-dimensional impacts in the drylands of sub-Saharan Africa and South Asia. The study applies the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) to a set of promising agricultural technologies and uses three outcome criteria: the benefit-cost ratio, poverty reduction, and nutrition security.
View Article and Find Full Text PDFAnimals (Basel)
November 2024
Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, Camino de Vera s/n, 46022 València, Spain.
The objective of this work was to ascertain the nutritive value of six concentrate feedstuffs commonly used in guinea pig feed manufacturing through the substitution method. Six test diets were obtained by replacing the corresponding basal mixture with 40% corn, 50% barley, 45% wheat bran, 35% soybean meal, 30% pigeon pea, or 30% Leucaena leaf meal. Sixty-three guinea pigs were randomly assigned to one of the nine experimental diets (three basal diets and six test diets, with seven animals per diet).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!