Introducing piezoelectric materials with the built-in electric field caused by mechanical force has been confirmed as an effective strategy to boost the separation efficiency of photoexcited charge carriers that determines the photocatalytic performance. In this study, we introduced BiTiO with superior piezoelectric properties into BiVO-BiVO materials to synthesize a 2D BiTiO-BiVO-BiVO photocatalyst a facile hydrothermal method. Compared with bare BiVO, the BiTiO-BiVO-BiVO piezo-photocatalytic activity towards Cr(VI) removal and oxygen evolution is boosted remarkably under both illumination and ultrasound treatments. The promoted photocatalytic activity can be ascribed to the accelerated photoexcited carrier separation efficiency driven by the polarization electric field and the synergy effect in the heterostructure. This work provides a simple and sustainable strategy for the design and development of piezo-photocatalysts with high photoredox activity capacity.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d2dt02346fDOI Listing

Publication Analysis

Top Keywords

photoredox activity
8
electric field
8
separation efficiency
8
improved photoredox
4
activity
4
activity bitio-bivo-bivo
4
bitio-bivo-bivo heterostructure
4
heterostructure piezoelectricity-enhanced
4
piezoelectricity-enhanced charge
4
charge transfer
4

Similar Publications

Adaptable Blueprint for Non-metal Near-Infrared Organic Photocatalysts by Aromatic Sulfones.

ACS Appl Mater Interfaces

January 2025

Graduate School of Environmental Science, Hokkaido University, N10, W5, Sapporo 060-0810, Japan.

We present a versatile approach to designing and utilizing high-performance nonmetal near-infrared (NIR) organic photocatalysts based on aromatic sulfones. Current NIR photocatalysts are mainly metal complexes and inorganic materials, while the few reported nonmetal organic NIR photocatalysts primarily use photosensitization to produce active species such as singlet oxygen. Our sulfone-rosamine-based redox photocatalyst demonstrates exceptional capabilities, including high ability for metal-free photo-oxidative bromination, intrinsically oxygen-independent redox reactions, and remarkable photostability with a turnover number (TON) exceeding 2800.

View Article and Find Full Text PDF

Photocatalytic Direct Borylation of Benzothiazole Heterocycles via a Triplet Activation Strategy.

Org Lett

January 2025

Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China.

Boron compounds are widely employed in organic chemistry, pharmaceuticals, and materials science. Among them, borylated heterocycles serve as versatile synthons for the construction of new C-C or C-heteroatom bonds via coupling or radical processes. Such methods for direct C-H borylation reactions are of high synthetic value to reduce the number of synthetic steps and the amount of waste and to improve efficiency.

View Article and Find Full Text PDF

The direct synthesis of C(sp)-rich architectures is a driving force for innovation in synthetic organic chemistry. Such scaffolds impart beneficial properties onto drug molecules that correlate with greater clinical success. Consequently, there is a strong impetus to develop new methods by which to access sp-rich molecules from commercial feedstocks, such as alkenes.

View Article and Find Full Text PDF

Understanding the interplay between gasotransmitters is essential for unlocking their therapeutic potential. However, achieving spatiotemporally controlled co-delivery to target cells remains a significant challenge. Herein, we propose an innovative strategy for the intracellular co-delivery of carbon monoxide (CO) and nitric oxide (NO) gasotransmitters under clinically relevant wavelengths.

View Article and Find Full Text PDF

Visible-Light-Fueled Polymerizations for 3D Printing.

Acc Chem Res

January 2025

Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Austin, Texas 78712, United States.

ConspectusLight-driven polymerizations and their application in 3D printing have revolutionized manufacturing across diverse sectors, from healthcare to fine arts. Despite the popularized notion that with 3D printing "imagination is the only limit", we and others in the scientific community have identified fundamental hurdles that restrict our capabilities in this space. Herein, we describe the group's efforts in developing photochemical systems that respond to nontraditional colors of light to elicit the rapid, spatiotemporally controlled formation of plastics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!