Mechanical stimulation is an effective approach for controlling stem cell differentiation in tissue engineering. However, its realization in in vivo tissue repair remains challenging since this type of stimulation can hardly be applied to injectable seeding systems. Here, it is presented that swelling of injectable microgels can be transformed to in situ mechanical stimulation via stretching the cells adhered on their surface. Poly(acrylamide-co-acrylic acid) microgels with the upper critical solution temperature property are fabricated using inverse emulsion polymerization and further coated with polydopamine to increase cell adhesion. Adipose-derived mesenchymal stem cells (ADSCs) adhered on the microgels can be omnidirectionally stretched along with the responsive swelling of the microgels, which upregulate TRPV4 and Piezo1 channel proteins and enhance nucleus pulposus (NP)-like differentiation of ADSCs. In vivo experiments reveal that the disc height and extracellular matrix content of NP are promoted after the implantation with the microgels. The findings indicate that swelling-induced mechanical stimulation has great potential for regulating stem cell differentiation during intervertebral disc repair.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adhm.202201925DOI Listing

Publication Analysis

Top Keywords

mechanical stimulation
16
adipose-derived mesenchymal
8
mesenchymal stem
8
stem cells
8
intervertebral disc
8
disc repair
8
stem cell
8
cell differentiation
8
microgels
6
stimulation
5

Similar Publications

Osteoarthritis, a major global cause of pain and disability, is driven by the irreversible degradation of hyaline cartilage in joints. Cartilage tissue engineering presents a promising therapeutic avenue, but success hinges on replicating the native physiological environment to guide cellular behavior and generate tissue constructs that mimic natural cartilage. Although electrical stimulation has been shown to enhance chondrogenesis and extracellular matrix production in 2D cultures, the mechanisms underlying these effects remain poorly understood, particularly in 3D models.

View Article and Find Full Text PDF

Unlabelled: Chronic back pain (CBP) is the leading cause of disability affecting 1 in 10 people worldwide. Symptoms are marked by persistent lower back pain, reduced mobility, and heightened cold sensitivity. Here, we utilize a mouse model of CBP induced by injecting urokinase-type plasminogen activator (uPA), a proinflammatory agent in the fibrinolytic pathway, between the L2/L3 lumbar vertebrae.

View Article and Find Full Text PDF

Bone defects present a significant challenge in orthopedics and trauma surgery, necessitating innovative approaches to stimulate effective bone regeneration. This study investigated the potential of lithium-doped calcium silicate (LiCS) cement to enhance bone regeneration and modulate the immune microenvironment to promote tissue repair. We synthesized a LiCS ceramic powder and performed comprehensive analyses of its physicochemical properties, including phase composition, morphology, setting time, and mechanical strength.

View Article and Find Full Text PDF

NLRP3 inflammasome-modulated angiogenic function of EPC via PI3K/ Akt/mTOR pathway in diabetic myocardial infarction.

Cardiovasc Diabetol

January 2025

Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, 24 Tong jia Lane, Nanjing, 210009, People's Republic of China.

Background: Inflammatory diseases impair the reparative properties of endothelial progenitor cells (EPC); however, the involvement of diabetes in EPC dysfunction associated with myocardial infarction (MI) remains unknown.

Methods: A model was established combining high-fat diet (HFD)/streptozotocin (STZ)-induced diabetic mice with myocardial infarction. The therapeutic effects of transplanted wild-type EPC, Nlrp3 knockout EPC, and Nlrp3 overexpression EPC were evaluated.

View Article and Find Full Text PDF

Visualization of Mechanical Force Regulation of Exosome Secretion Using High Time-Spatial Resolution Imaging.

Anal Chem

January 2025

State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China.

Exosomes are small endosome-derived extracellular vesicles that participate in cell-cell communication, particularly in the context of tumorigenesis, and their secretion is influenced by the tumor microenvironment. While previous studies suggest that mechanical forces may enhance exosome release, the direct relationship between these forces and exosome secretion needs to be further characterized. Here, we utilized dual-color CD63 reporter-based high-speed live-cell imaging to visualize how mechanical forces influence exosome release in situ.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!