A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Bioinspired Orthopedic Biomaterial with Tunable Mechanical Properties Based on Sintered Titanium Fibers. | LitMetric

Inadequate mechanical compliance of orthopedic implants can result in excessive strain of the bone interface, and ultimately, aseptic loosening. It is hypothesized that a fiber-based biometal with adjustable anisotropic mechanical properties can reduce interface strain, facilitate continuous remodeling, and improve implant survival under complex loads. The biometal is based on strategically layered sintered titanium fibers. Six different topologies are manufactured. Specimens are tested under compression in three orthogonal axes under 3-point bending and torsion until failure. Biocompatibility testing involves murine osteoblasts. Osseointegration is investigated by micro-computed tomography and histomorphometry after implantation in a metaphyseal trepanation model in sheep. The material demonstrates compressive yield strengths of up to 50 MPa and anisotropy correlating closely with fiber layout. Samples with 75% porosity are both stronger and stiffer than those with 85% porosity. The highest bending modulus is found in samples with parallel fiber orientation, while the highest shear modulus is found in cross-ply layouts. Cell metabolism and morphology indicate uncompromised biocompatibility. Implants demonstrate robust circumferential osseointegration in vivo after 8 weeks. The biometal introduced in this study demonstrates anisotropic mechanical properties similar to bone, and excellent osteoconductivity and feasibility as an orthopedic implant material.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adhm.202202106DOI Listing

Publication Analysis

Top Keywords

mechanical properties
12
sintered titanium
8
titanium fibers
8
anisotropic mechanical
8
bioinspired orthopedic
4
orthopedic biomaterial
4
biomaterial tunable
4
mechanical
4
tunable mechanical
4
properties based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!