AMP-activated protein kinase (AMPK) regulates overall energy consumption and energy intake through cytokines. Ligusticum striatum DC (CX) combined with Gastrodia elata Blume (TM) has been used for migraine treatment for millennia. When used alone in clinical practice, CX causes symptoms of thirst, irritability, and yellow urine and has influenced the levels of cytokines such as AMP that activate the AMPK pathway of energy metabolism. However, relationships between this compatibility prescription, integral biological energy metabolism, and the AMPK pathway remain unclear. Studies were performed by treating normal rats with physiological saline, CX extract, CX coupled TM extract, and TM extracts separately for 4 weeks. Food intake, water intake, urine output, stool output, and body weight were monitored once a week by the metabolic cage method. Values of FBG, BUN, TP, TC and TG in blood samples were detected approaching the whole blood automatic detector from 1 to 4 weeks. Na-K-ATPase, Ca-Mg-ATPase, cAMP, and cGMP activity were determined by the enzyme-linked immunosorbent assay (ELISA); the biological samples that were obtained at 1, 2, 3, and 4 weeks after drug administration were tested by GC-TOF-MS. Then real-time PCR and Western Blot were applied to detect changes in expression of some substances involved in energy metabolism. The results demonstrated that administering CX alone increased energy input, mobility, and respiratory exchange ratio, accelerated energy consumption, and caused inflammatory infiltration in the liver. CX coupled with TM led to lower energy metabolism and liver damage in comparison with CX used alone. Moreover, CX-treated rats harbored higher levels of differential metabolites (including pyrophosphate, oxaloacetic acid, and galactinol). Glycerophospholipid metabolism and the citrate cycle are closely related to the differential metabolites above. In addition, CX-induced unbalanced energy metabolism depends on cAMP activation mediated by the AMPK/PGC-1α pathway in rats. Our findings suggest that CX-induced energy metabolism imbalance was corrected after coupling with TM by mediating the AMPK/PGC-1α pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ptr.7623DOI Listing

Publication Analysis

Top Keywords

energy metabolism
28
energy
11
metabolism
8
energy consumption
8
ampk pathway
8
differential metabolites
8
ampk/pgc-1α pathway
8
pathway
5
studies mechanism
4
mechanism energy
4

Similar Publications

Our previous studies revealed the existence of a Universal Receptive System that regulates interactions between cells and their environment. This system is composed of DNA- and RNA-based Teazeled receptors (TezRs) found on the surface of prokaryotic and eukaryotic cells, as well as integrases and recombinases. In the current study, we aimed to provide further insight into the regulatory role of TezR and its loss in Staphylococcus aureus gene transcription.

View Article and Find Full Text PDF

Iron-Mediated Regulation in Adipose Tissue: A Comprehensive Review of Metabolism and Physiological Effects.

Curr Obes Rep

January 2025

Department of Endocrinology and Metabolism, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai, China.

Purpose Of Review: Review the latest data regarding the intersection of adipose tissue (AT) and iron to meet the needs of AT metabolism and the progression of related diseases.

Recent Findings: Iron is involved in fundamental biological metabolic processes and is precisely fine-tuned within the body to maintain cellular, tissue and even systemic iron homeostasis. AT not only serves as an energy storage depot but also represents the largest endocrine organ in the human body, maintaining systemic metabolic homeostasis.

View Article and Find Full Text PDF

Ecology and evolution are considered distinct processes that interact on contemporary time scales in microbiomes. Here, to observe these processes in a natural system, we collected a two-decade, 471-metagenome time series from Lake Mendota (Wisconsin, USA). We assembled 2,855 species-representative genomes and found that genomic change was common and frequent.

View Article and Find Full Text PDF

This study investigates the phenolic compounds (PC), volatile compounds (VC), and fatty acids (FA) of extra virgin olive oil (EVOO) derived from the Turkish olive variety "Sarı Ulak", along with ADMET, DFT, molecular docking, and gene network analyses of significant molecules identified within the EVOO. Chromatographic methods (GC-FID, HPLC) were employed to characterize FA, PC, and VC profiles, while quality parameters, antioxidant activities (TAC, ABTS, DPPH) were assessed via spectrophotometry. The analysis revealed a complex composition of 40 volatile compounds, with estragole, 7-hydroxyheptene-1, and 3-methoxycinnamaldehyde as the primary components.

View Article and Find Full Text PDF

Metabolic engineering of Priestia megaterium for 2'-fucosyllactose production.

Microb Cell Fact

January 2025

Department of Chemical & Biological Engineering, Korea University, Seoul, 136-763, Korea.

Background: 2'-Fucosyllactose (2'-FL) is a predominant human milk oligosaccharide that significantly enhances infant nutrition and immune health. This study addresses the need for a safe and economical production of 2'-FL by employing Generally Recognized As Safe (GRAS) microbial strain, Priestia megaterium ATCC 14581. This strain was chosen for its robust growth and established safety profile and attributing suitable for industrial-scale production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!