Editorial: Collagen IV nephropathies: Alport syndrome and beyond.

Front Med (Lausanne)

Department of Medicine (Melbourne Health and Northern Health), The University of Melbourne, Parkville, VIC, Australia.

Published: September 2022

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9562859PMC
http://dx.doi.org/10.3389/fmed.2022.1039949DOI Listing

Publication Analysis

Top Keywords

editorial collagen
4
collagen nephropathies
4
nephropathies alport
4
alport syndrome
4
editorial
1
nephropathies
1
alport
1
syndrome
1

Similar Publications

Mechanically regulated microcarriers with stem cell loading for skin photoaging therapy.

Bioact Mater

April 2025

Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325035, China.

Long-term exposure to ultraviolet radiation compromises skin structural integrity and results in disruption of normal physiological functions. Stem cells have gained attention in anti-photoaging, while controlling the tissue mechanical microenvironment of cell delivery sites is crucial for regulating cell fate and achieving optimal therapeutic performances. Here, we introduce a mechanically regulated human recombinant collagen (RHC) microcarrier generated through microfluidics, which is capable of modulating stem cell differentiation to treat photoaged skin.

View Article and Find Full Text PDF

Purpose: Uterine leiomyomas (ULMs) are classified into those with and without MED12 mutations (MED12m(+) and MED12m(-), respectively). This study was undertaken to establish a culture system to evaluate the effect of female hormones on the growth of ULM cells in each ULM subtype.

Methods: ULM cells isolated from MED12m(+) or MED12m(-) tissues were cultured in a monolayer for 7 days with four hormone treatments: estrogen (E) and progesterone (P) (E + P), E only (E), P only (P), and medium only (CTRL).

View Article and Find Full Text PDF

FABP4 as a therapeutic host target controlling SARS-CoV-2 infection.

EMBO Mol Med

January 2025

Sabri Ülker Center for Metabolic Research, Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA, USA.

Host metabolic fitness is a critical determinant of infectious disease outcomes. Obesity, aging, and other related metabolic disorders are recognized as high-risk disease modifiers for respiratory infections, including coronavirus infections, though the underlying mechanisms remain unknown. Our study highlights fatty acid-binding protein 4 (FABP4), a key regulator of metabolic dysfunction and inflammation, as a modulator of SARS-CoV-2 pathogenesis, correlating strongly with disease severity in COVID-19 patients.

View Article and Find Full Text PDF

Many biological fibrous tissues exhibit distinctive mechanical properties arising from their highly organized fibrous structure. In disease conditions, alterations in the primary components of these fibers, such as type I collagen molecules in bone, tendons, and ligaments, assembly into a disorganized fibers architecture generating a weak and/or brittle material. Being able to quantitatively assess the fibers orientation and organization in biological tissue may help improve our understanding of their contribution to the tissue and organ mechanical integrity, and assess disease progress and therapy effect.

View Article and Find Full Text PDF

Many mammalian cells, including endothelial cells and fibroblasts, align and elongate along the orientation of extracellular matrix (ECM) fibers in a gel when cultured . During cell elongation, clusters of focal adhesions (FAs) form near the poles of the elongating cells. FAs are mechanosensitive clusters of adhesions that grow under mechanical tension exerted by the cells' pulling on the ECM and shrink when the tension is released.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!