Site-Selective Modification of (Oligo)Saccharides.

ACS Catal

Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.

Published: October 2022

Oligosaccharides, either as such or as part of glycolipids, glycopeptides, or glycoproteins, are ubiquitous in nature and fulfill important roles in the living cell. Also in medicine and to some extent in materials, oligosaccharides play an important role. In order to study their function, modifying naturally occurring oligosaccharides, and building in reactive groups and reporter groups in oligosaccharides, are key strategies. The development of oligosaccharides as drugs, or vaccines, requires the introduction of subtle modifications in the structure of oligosaccharides to optimize efficacy and, in the case of antibiotics, circumvent bacterial resistance. Provided the natural oligosaccharide is available, site-selective modification is an attractive approach as total synthesis of the target is often very laborious. Researchers in catalysis areas, such as transition-metal catalysis, enzyme catalysis, organocatalysis, and photoredox catalysis, have made considerable progress in the development of site-selective and late-stage modification methods for mono- and oligosaccharides. It is foreseen that the fields of enzymatic modification of glycans and the chemical modification of (oligo)saccharides will approach and potentially meet each other, but there is a lot to learn and discover before this will be the case.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9552177PMC
http://dx.doi.org/10.1021/acscatal.2c03876DOI Listing

Publication Analysis

Top Keywords

oligosaccharides
9
site-selective modification
8
modification oligosaccharides
8
oligosaccharides oligosaccharides
4
oligosaccharides glycolipids
4
glycolipids glycopeptides
4
glycopeptides glycoproteins
4
glycoproteins ubiquitous
4
ubiquitous nature
4
nature fulfill
4

Similar Publications

Article Synopsis
  • Human milk (HBM) and bovine milk (PBM) are both sources of nutrition that involve lactose, which can be fermented by the bacteria Streptococcus mutans, potentially affecting dental health.
  • This study compares how S. mutans forms biofilms, produces acid, and buffers in HBM, plain and sweetened PBM, and infant formula (IF) through various microbiological assays.
  • Results indicated that sweetened bovine milk had the highest biofilm formation and lowest pH, while both HBM and PBM showed low cariogenicity, differing from the effects of sucrose.
View Article and Find Full Text PDF

Trehalose has neuroprotective effects in neurodegenerative diseases. This study aimed to explore the impact of trehalose on traumatic brain injury (TBI) by investigating its role in neuroprotection. The TBI mice model was established utilizing the cortical impact technique followed by trehalose treatment.

View Article and Find Full Text PDF

Background: The human gut microbiota develops in concordance with its host over a lifetime, resulting in age-related shifts in community structure and metabolic function. Little is known about whether these changes impact the community's response to microbiome-targeted therapeutics. Providing critical information on this subject, faecal microbiomes of subjects from six age groups, spanning from infancy to 70-year-old adults (n = six per age group) were harvested.

View Article and Find Full Text PDF

Human milk oligosaccharides (HMOs), the third most abundant solid component in human milk, vary significantly among women due to factors such as secretor status, race, geography, season, maternal nutrition and weight, gestational age, and delivery method. In recent studies, HMOs have been shown to have a variety of functional roles in the development of infants. Because HMOs are not digested by infants, they act as metabolic substrates for certain bacteria, helping to establish the infant's gut microbiota.

View Article and Find Full Text PDF

L. oligo-polysaccharides (CIOs), obtained from L., is a mixture of oligosaccharides and polysaccharides.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!