Macrocyclic metal porphyrin complexes can act as shape-selective catalysts mimicking the action of enzymes. To achieve enzyme-like reactivity, a mechanistic understanding of the reaction at the molecular level is needed. We report a mechanistic study of alkene epoxidation by the oxidant iodosylbenzene, mediated by an achiral and a chiral manganese(V)oxo porphyrin cage complex. Both complexes convert a great variety of alkenes into epoxides in yields varying between 20-88 %. We monitored the process of the formation of the manganese(V)oxo complexes by oxygen transfer from iodosylbenzene to manganese(III) complexes and their reactivity by ion mobility mass spectrometry. The results show that in the case of the achiral cage complex the initial iodosylbenzene adduct is formed on the inside of the cage and in the case of the chiral one on the outside of the cage. Its decomposition leads to a manganese complex with the oxo ligand on either the inside or outside of the cage. These experimental results are confirmed by DFT calculations. The oxo ligand on the outside of the cage reacts faster with a substrate molecule than the oxo ligand on the inside. The results indicate how the catalytic activity of the macrocyclic porphyrin complex can be tuned and explain why the chiral porphyrin complex does not catalyze the enantioselective epoxidation of alkenes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9541230 | PMC |
http://dx.doi.org/10.1002/ejoc.202200280 | DOI Listing |
Inorg Chem
January 2025
Department of Chemistry, University of Calgary, 2500 University Dr. NW, T2N 1N4 Calgary, AB Canada.
The extent of coordination-induced bond weakening in aquo and hydroxo ligands bonded to a molybdenum(III) center complexed by a dianionic, pentadentate ligand system was probed by reacting the known complex (BPzPy)Mo(III)-NTf, , with degassed water or dry lithium hydroxide. The aquo adduct was not observed, but two LiNTf-stabilized hydroxo complexes were fully characterized. Computational and experimental work showed that the O-H bond in these complexes was significantly weakened (to ≈57 kcal mol), such that these compounds could be used to form the diamagnetic, neutral terminal molybdenum oxo complex (BPzPy)Mo(IV)O, , by hydrogen atom abstraction using the aryl oxyl reagent ArO• (Ar = 2,4,6-tri--butylphenyl).
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India.
The work establishes the salt of a tetra-cationic distibane, [LSb][CFSO] = [][OTf] (CFSO = OTf), stabilized by a bis(α-iminopyridine) ligand , defying the Coulombic repulsion. The synthetic approach involved a dehydrocoupling reaction when a mixture of and Sb(OTf) in a 1:1 ratio was treated with EtSiH/LiBEtH as the hydride source. Compound [][OTf] was also achieved from [LSbCl][OTf] as a precursor and using EtSiH.
View Article and Find Full Text PDFAdv Mater
January 2025
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
The design and synthesis of metal-organic frameworks (MOFs) with outstanding light-harvesting and photoexcitation for artificial photocatalytic CO reduction is an attractive but challenging task. In this work, a novel aggregation-induced emission (AIE)-active ligand, tetraphenylpyrazine (PTTBPC) is proposed and utilized for the first time to construct a Zr-MOF photocatalyst via coordination with stable Zr-oxo clusters. Zr-MOF is featured by a scu topology with a two-fold interpenetrated framework, wherein the PTTBPC ligands enable strong light-harvesting and photoexcitation, while the Zr-oxo clusters facilitate CO adsorption and activation, as well as offer potential sites for further metal modification.
View Article and Find Full Text PDFChemistry
January 2025
Indian Institute of Technology Delhi, Department of Chemistry, Hauz Khas, 110016, New Delhi, INDIA.
A mononuclear CoIII complex (1) of a bisamide-bisalkoxide donor ligand was synthesized and thoroughly characterized. The reaction of 1 with 0.5 equiv.
View Article and Find Full Text PDFResults Chem
December 2024
Department of Chemistry and Biochemistry, Old Dominion University 4501 Elkhorn Avenue, Norfolk, VA 23529, USA.
In this study, the copper(II) complex [Cu(chromoneTSC)Cl]•0.5HO•0.0625CHOH (where chromoneTSC = -Ethyl-2-((4-oxo-4H-chromen-3-yl)methylene)-hydrazinecarbothioamide) was synthesized and characterized; then used to carry out studies in combination with berberine chloride (BBC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!