Magnetically actuated endoscopes are currently transitioning in to clinical use for procedures such as colonoscopy, presenting numerous benefits over their conventional counterparts. Intelligent and easy-to-use control strategies are an essential part of their clinical effectiveness due to the un-intuitive nature of magnetic field interaction. However, work on developing intelligent control for these devices has mainly been focused on general purpose endoscope navigation. In this work, we investigate the use of autonomous robotic control for magnetic colonoscope intervention via biopsy, another major component of clinical viability. We have developed control strategies with varying levels of robotic autonomy, including semi-autonomous routines for identifying and performing targeted biopsy, as well as random quadrant biopsy. We present and compare the performance of these approaches to magnetic endoscope biopsy against the use of a standard flexible endoscope on bench-top using a colonoscopy training simulator and silicone colon model. The semi-autonomous routines for targeted and random quadrant biopsy were shown to reduce user workload with comparable times to using a standard flexible endoscope.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9555223PMC
http://dx.doi.org/10.1109/TMRB.2022.3187028DOI Listing

Publication Analysis

Top Keywords

robotic autonomy
8
magnetic endoscope
8
endoscope biopsy
8
control strategies
8
semi-autonomous routines
8
random quadrant
8
quadrant biopsy
8
standard flexible
8
flexible endoscope
8
biopsy
6

Similar Publications

Objective. Assistive robots can be developed to restore or provide more autonomy for individuals with motor impairments. In particular, power wheelchairs can compensate lower-limb impairments, while robotic manipulators can compensate upper-limbs impairments.

View Article and Find Full Text PDF

Background: Rehabilitation is a critical process for enhancing functionality, independence, and quality of life in individuals with disabilities. Grounded in the biopsychosocial model, it addresses physical, emotional, and social dimensions through personalized, evidence-based interventions. By integrating standardized assessments and continuous evaluation, rehabilitation has the potential to promote recovery and support active participation in society.

View Article and Find Full Text PDF

The application of artificial intelligence (AI) to healthcare in Africa has the potential to transform productivity, diagnosis, disease surveillance, and resource allocation by improving accuracy and efficiency. However, to fully realize its benefits, it is necessary to consider issues concerning data privacy, equity, infrastructure integration, and ethical policy development. The use of these tools may improve the detection of diseases, the distribution of resources, and the continuity of care.

View Article and Find Full Text PDF

Untethered Soft Robots Based on 1D and 2D Nanomaterials.

Adv Mater

January 2025

School of Mechanical Engineering, Southeast University, Nanjing, Jiangsu, 211189, P. R. China.

Biological structures exhibit autonomous and intelligent behaviors, such as movement, perception, and responses to environmental changes, through dynamic interactions with their surroundings. Inspired by natural organisms, future soft robots are also advancing toward autonomy, sustainability, and interactivity. This review summarizes the latest achievements in untethered soft robots based on 1D and 2D nanomaterials.

View Article and Find Full Text PDF

Endovascular interventions excel in treating cardiovascular diseases in a minimally invasive manner, showing improved outcomes over open techniques. However, challenges related to precise navigation - still relying on 2D fluoroscopy - persist. This review examines the role of robotics, highlighting commercial and research platforms, while exploring emerging trends like MRI compatibility, enhanced navigation, and autonomy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!