Electrochemical sensors play an essential role in the medical arena through assessing the drug quality and diagnosing diseases. The design of sensors relies on the electroactive properties of the material meticulously chosen to modify the electrode. Here in this work, a facile ternary SnSe/TiO@GO electroactive nanocomposite was prepared using tin selenide (SnSe) in combination with titanium dioxide (TiO) embedded on graphene oxide (GO). The ternary nanocomposite was characterized by X-ray diffraction, Raman, FT-IR, and X-ray photoelectron spectroscopy, energy dispersive analysis, and scanning electron microscopy. The ternary nanocomposite was then drop-coated on the GC electrode to form the SnSe/TiO@GO-GC electrode. Its electrochemical activity was demonstrated for simultaneous determination of paracetamol, tryptophan, and caffeine. The synergetic interaction of the components and their innate virtue showed enriched electrocatalytic activity such as a decrease in overpotential, enhancement in electron transfer, greater sensing ability and selectivity, wide linear range, and low detection limit toward the chosen analytes. Broad linear ranges of concentrations, 0.0089-410, 0.0136-87.66, and 0.0160-355 μM, with detection limits of 0.0030, 0.0053, and 0.0065 μM for paracetamol, tryptophan, and caffeine, respectively, were noticed. The electrode also displayed high selectivity, stability, repeatability, and reproducibility. Importantly, the study was successful for detection and quantification of the above components in real samples of blood serum, pharmaceutical formulations, and beverages.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9557887PMC
http://dx.doi.org/10.1021/acsomega.1c07306DOI Listing

Publication Analysis

Top Keywords

ternary nanocomposite
12
paracetamol tryptophan
12
tryptophan caffeine
12
simultaneous determination
8
determination paracetamol
8
electrode
5
design efficient
4
efficient tin
4
tin selenide-based
4
ternary
4

Similar Publications

This study details the synthesis of a novel ternary nanocomposite composed of MnFeO, FeVO, and modified zeolite, achieved through a two-step process. The initial step involved the hydrothermal synthesis of the MnFeO/FeVO composite, followed by its application onto modified zeolite using ultrasonic waves. The synthesized nanocomposite was thoroughly characterized using a range of analytical techniques.

View Article and Find Full Text PDF

Promethazine hydrochloride (PMHC) is a vital drug that is used as an anticholinergic, antipsychotic, antihistaminic, analgesic, sedative, and neuroleptic. However, the overdosage of PMHC also causes reproductive variations, cardiac changes, hypotension, and endocrinal variations. Hence, the detection of PMHC is crucial.

View Article and Find Full Text PDF

This study involves a novel CuO/CoFe₂O₄/MWCNTs (CCT) nanocomposite, developed by integrating cobalt ferrite (CoFe₂O₄) and copper oxide (CuO) nanoparticles onto multi-walled carbon nanotubes (MWCNTs), for the degradation of tetracycline (TC) under visible light. The photocatalyst was extensively characterized using XRD, HR-SEM, EDX, HR-TEM, UV-Vis, BET, and PL analysis. The synthesized CoFe₂O₄ and CuO nanoparticles exhibited crystallite sizes of 46.

View Article and Find Full Text PDF

Portable Amperometric Biosensor Enhanced with Enzyme-Ternary Nanocomposites for Prostate Cancer Biomarker Detection.

Biosensors (Basel)

December 2024

Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea.

Enzyme-based portable amperometric biosensors are precise and low-cost medical devices used for rapid cancer biomarker screening. Sarcosine (Sar) is an ideal biomarker for prostate cancer (PCa). Because human serum and urine contain complex interfering substances that can directly oxidize at the electrode surface, rapid Sar screening biosensors are relatively challenging and have rarely been reported.

View Article and Find Full Text PDF

Visible light-driven photocatalytic degradation of atrazine in aqueous phase: impact of the g-CN/TiO/NiFeO nanocomposite activated by potassium peroxymonosulfate.

Environ Sci Pollut Res Int

December 2024

Department of Soil Sciences and Agri-Food Engineering, Centre in Green Chemistry & Catalysis, Centr'Eau, University Laval, Quebec, G1V 0A6, Canada.

The present investigation focused on the photocatalytic degradation of aqueous atrazine over g-CN/TiO/NiFeO composite in the presence of peroxymonosulfate (PMS) under visible light irradiation. The ternary photocatalyst was synthesized and characterized using XRD, FTIR, nitrogen sorption, SEM, UV-Vis, and photoluminescence spectroscopy. This catalyst exhibited full absorption in the visible spectrum at 815 nm and a high specific surface area of 105 m/g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!